
LOCALISED CODEGREE CONDITIONS FOR TIGHT HAMILTON CYCLES IN
3-UNIFORM HYPERGRAPHS

PEDRO ARAÚJO, SIMÓN PIGA, AND MATHIAS SCHACHT

Abstract. We study sufficient conditions for the existence of Hamilton cycles in uniformly dense
3-uniform hypergraphs. Problems of this type were first considered by Lenz, Mubayi, and Mycroft
for loose Hamilton cycles and Aigner-Horev and Levy considered it for tight Hamilton cycles for a
fairly strong notion of uniformly dense hypergraphs. We focus on tight cycles and obtain optimal
results for a weaker notion of uniformly dense hypergraphs.

We show that if an n-vertex 3-uniform hypergraph H “ pV,Eq has the property that for any set
of vertices X and for any collection P of pairs of vertices, the number of hyperedges composed by
a pair belonging to P and one vertex from X is at least p1{4 ` op1qq|X||P | ´ op|V |3q and H has
minimum vertex degree at least Ωp|V |2q, then H contains a tight Hamilton cycle. A probabilistic
construction shows that the constant 1{4 is optimal in this context.

§1. Introduction

Dirac’s theorem states that any graph on n ě 3 vertices and minimum degree at least n{2 contains
a Hamilton cycle. This is best possible in terms of minimum degree, since a graph composed by
two disjoint cliques of sizes tn{2u and rn{2s is not even connected. Here we investigate what kind of
properties ensure the existence of Hamilton cycles in 3-uniform hypergraphs.

Since we restrict our attention to 3-uniform hypergraphs, if not mentioned otherwise, by a
hypergraph we will mean a 3-uniform hypergraph. We denote an edge tu, v, wu P EpHq by uvw.
An ordered set of distinct vertices pv1, v2, . . . , v`q forms a tight path of length ` ´ 2 if every three
consecutive vertices form an edge. The pairs pv1, v2q and pv`´1, v`q are the starting pair and the
ending pair of the path, and we frequently call such a tight path a pv1, v2q-pv`´1, v`q-path. For
simplicity we denote a tight path by listing its vertices. A tight path v1v2 . . . v` together with the
edges v`´1v`v1 and v`v1v2 forms a tight cycle of length `. A tight cycle which covers all vertices of
the hypergraph will be called tight Hamilton cycle. Similarly, a loose Hamilton cycle in an n-vertex
hypergraph (with n even) is a cyclicly ordered collection of n{2 edges in such a way that two edges
intersect if and only if they are consecutive and, consequently, they intersect in exactly one vertex.

Large part of this collaboration was carried out while the first author was a visiting Ph.D. student at the University
of Hamburg, funded by PDSE program by the Brazilian agency CAPES. The second author was supported by
ANID/CONICYT Acuerdo Bilateral DAAD/62170017 through a Ph.D. Scholarship. The third author was supported
by the ERC (PEPCo 724903).
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There is more than one notion of degrees in hypergraphs. Given a hypergraph H and v P V pHq,
we define the neighbourhood and the degree of v by

NHpvq “ ter tvu : v P e P EpHqu and dHpuq “ |Npuq|,

respectively. Similarly, for u, v P V pHq, we also define their neighbourhood and their codegree by

NHpu, vq “ tw P V pHq : tu, v, wu P EpHqu and dHpu, vq “ |Npu, vq|.

Let δ1pHq be the minimum degree and δ2pHq the minimum codegree of H.
A possible extension of Dirac’s theorem for hypergraphs was proposed in [1111]. Asymptotically

optimal minimum degree and codegree conditions were obtained for loose Hamilton cycles [44, 1212]
and for tight Hamilton cycles [1717,2121]. Similar to the extremal constructions for Dirac’s theorem for
graphs, the constructions that show optimality for those results have a very rigid structure. In the
graph case, for instance, the extremal constructions contain large pairs of sets of vertices with no
edges between them.

Motivated by this, we say an n-vertex graph G is p%, dq-dense if for every pair of vertex sets, X
and Y , the number of edges between them is at least d|X||Y |´%n2. Using a result from Chvátal and
Erdős [55], it is not hard to prove that for every α, d ą 0 there is an % ą 0 for which every sufficiently
large p%, dq-dense n-vertex graph with minimum degree at least αn contains a Hamilton cycle. Note
that the minimum degree condition can not be dropped, as this notion of p%, dq-density does not
prevent the graph from having isolated vertices.

There are several ways to extend the notion of p%, dq-density to 3-uniform hypergraphs. Here we
consider the following three notions that we symbolise by , , and (see also [22,1616,1818,1919]).

Definition 1.1. Let %, d P p0, 1s and let H be a 3-uniform hypergraph on n vertices.
We say that H is p%, d, q-dense if for every three sets of vertices X,Y, Z we have

epX,Y, Zq “ |tpx, y, zq P X ˆ Y ˆ Z : tx, y, zu P EpHqu| ě d|X||Y ||Z| ´ %n3.

We say that H is p%, d, q-dense if for every set of vertices X and every collection of pairs of
vertices P Ď V ˆ V we have

epX,P q “ |tpx, py, zqq P X ˆ P : tx, y, zu P EpHqu| ě d|X||P | ´ %n3.

We say that H is p%, ε, q-dense if for every two collections of pairs of vertices P,Q Ď V ˆ V we
have

epP,Qq “ |tppx, yq, py, zqq P P ˆQ : tx, y, zu P EpHqu| ě d|K pQ,P q| ´ %n3,

where K pQ,P q “ tppx, yq, py, zqq P P ˆQu.

Observe that is the weakest notion and is the strongest (see [1818] for details). Our main result
concerns -dense hypergraphs. We consider this notion as a localised codegree condition since it
implies that for every linear sized set X most pairs of vertices will have the same proportion of
neighbours in X as in the whole hypergraph.
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We are interested in (asymptotically) optimal assumptions for -dense hypergraphs to ensure
Hamilton cycles. This line of research can be traced back to the work of Lenz, Mubayi and
Mycroft [1313], who proved that for arbitrarily small d, α ą 0 there is an % ą 0 such that every
sufficiently large p%, d, q-dense n-vertex hypergraph with minimum degree αn2 contains a loose
Hamilton cycle (in fact they proved this result for r-uniform hypergraphs for r ě 2). As this density
condition is the weakest one, this theorem implies the same result for the stronger notions and .

Aigner-Horev and Levy [22] proved the same conclusion for tight cycles, but considering minimum
codegree conditions instead of vertex degrees and assuming the strongest density notion . More
precisely, they proved that for every d, α ą 0 there is a % ą 0 such that every sufficiently large p%, d, q-
dense hypergraph with minimum codegree αn contains a tight Hamilton cycle. It turns out that for
the -density an analogous result is not possible due the following counterexample.

Example 1.2. Let G be a random graph Gn´2,1{2 and define a 3-uniform hypergraph on the same
set of vertices for which a triple of vertices is a hyperedge, if it forms a triangle in G or in G.
Observe that every tight cycle in H can only use edges, all of which induce triangles in G or they
induce only triangles en G. Finally, add two new vertices x, y in such a way that NHpxq “ EpGq

and NHpyq “ EpGq. Then x is covered only by cycles induced by triangles in G and y is covered
only by cycles induced by triangles in G. Hence H contains no tight Hamilton cycle. Obviously,
adding all the edges containing the pair tx, yu, the hypergraph H only yields a tight Hamilton
path, but not a tight Hamilton cycle. One can show for every % ą 0 that with high probability H
is p%, 1{4, q-dense and it has minimum degree p1{4´ %q

`

n
2
˘

and even minimum codegree p1{4´ %qn.

Our main result asserts that the previous example is essentially best possible.

Theorem 1.3. For every ε ą 0 there exist % ą 0 and n0 such that every p%, 1{4 ` ε, q-dense
3-uniform hypergraph H on n ě n0 vertices with δ1pHq ě ε

`

n
2
˘

contains a tight Hamilton cycle.

We also strengthen a result of Aigner-Horev and Levy [22] by showing that their codegree assumption
for tight Hamilton cycles in -dense hypergraphs can be relaxed to a minimum vertex degree
assumption.

Theorem 1.4. For every d, α ą 0 there exist % ą 0 and n0 such that every p%, d, q-dense 3-uniform
hypergraph H on n ě n0 vertices with δ1pHq ě α

`

n
2
˘

contains a tight Hamilton cycle.

Theorem 1.41.4 was conjectured in [22] and was obtained independently in [88]. The main purpose
of this paper is proving Theorem 1.31.3. The proof of Theorem 1.41.4 is based on similar ideas and we
discuss the details in Section 77.

The rest of the paper is organised as follows. In Section 2 we recall the Absorption Method
and introduce its three main parts the Almost Covering Lemma, the Connecting Lemma and the
Absorbing Path Lemma. The proofs of those lemmata are given in Sections 44, 55, and 66. In Section 33
we collect some preliminary observations. In Section 77 we discuss the necessary changes to the main
proof in order to prove Theorem 1.41.4. We close with a few concluding remarks in Section 88.
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§2. Absorption Method

In [2121], Rödl, Ruciński and Szemerédi introduced the Absorption Method, which turned out to be
a very useful approach for embedding spanning cycles in hypergraphs. This method reduces the
problem to finding an almost spanning cycle with a small special path in it, called the absorbing
path. The absorbing path A can absorb any small set of vertices into a new bigger path, with the
same ends as A, completing the almost spanning cycle into a Hamilton cycle.

The almost spanning cycle will be composed from smaller tight paths, which will be connected to
longer paths. For that it would be useful if any given two pairs of vertices px, yq and pw, zq, being
the ends of such smaller paths, can be connected by a short tight path. However, in view of the
assumptions of Theorem 1.31.3, it is easy to see that not any pair of pairs can be connected in this way
(in particular, there could be pairs with codegree zero). For that we introduce the following notion
of connectable pairs and we will show that for those pairs there actually exist tight connecting paths
between them (see Lemma 2.42.4 below).

Definition 2.1. Let H “ pV,Eq be a hypergraph. We say that px, yq P V ˆ V is β-connectable
in H if the set

Zxy “ tz P V : xyz P EpHq and dpy, zq ě β|V |u,

has size at least β|V |. Moreover, we say that an pa, bq-pc, dq-path is β-connectable if the pairs pb, aq
and pc, dq are β-connectable.

Observe that the starting pair of the path is asked to be β-connectable in the inverse direction as
it appears in the path.

The proof of Theorem 1.31.3 splits into three lemmata. Let H “ pV,Eq be a p%, 1{4` ε, q-dense
hypergraph on n vertices, with ε " % " 1{n, where a " b means that b is chosen appropriately small
depending on a. First we prove that such hypergraphs can be almost covered by a collection of ‘few’
tight paths. We remark that this is even true under the weaker assumption of non-vanishing -density.
A straight forward proof is presented in Section 44.

Lemma 2.2 (Almost Covering Lemma). For all d, γ P p0, 1s there exist %, β ą 0, and n0 such that
in every p%, d, q-dense hypergraph H on n ě n0 vertices there exists a collection of at most 1{β
disjoint β-connectable paths, that cover all but at most γ2n vertices of H.

Next we discuss how to find an absorbing path, which contains a collection of several smaller
structures, called absorbers. For v P V , we call Av Ď H an absorber for v if both Av and Av Y tvu
span tight paths with same ends (we say that Av absorbs v). The main difficulty is to define the
absorbers in such a way that we can prove that every vertex is contained in many of them. In
Section 66 we see that the absorbers considered here are in fact more complicated and absorb sets
of three vertices instead of one. This leads to a divisibility issue which we consider separately in
Lemma 6.46.4. Going further, we can find a relatively small collection of tight paths which can absorb
any sufficiently small given set of vertices. After finding this collection we connect them together to
form one tight path with the absorption property described in the following lemma.
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Lemma 2.3 (Absorbing Path Lemma). For every ε ą 0 there exist %, β, γ1 ą 0 and n0 such that
the following is true for every positive γ ď γ1 and every p%, 1{4` ε, q-dense hypergraph H “ pV,Eq

on n ě n0 vertices with δ1pHq ě εn2.
For every R Ď V , with |R| ď 2γ2n, there exists a tight β-connectable path A with V pAq Ď V rR

and |V pAq| ď γn, such that for every U Ď V pHqrA with |U | ď 3γ2n, the hypergraph HrV pAq YU s
has a tight Hamilton path with the same ends as A.

The set of vertices R in Lemma 2.32.3 will act as a reservoir of vertices that will be used later for
connecting the tight paths mentioned in Lemmata 2.22.2 and 2.32.3, without interfering with the vertices
already used by those tight paths.

The next lemma justifies Definition 2.12.1 and shows that between every two β-connectable pairs
there exist several short tight paths connecting them. As it was said before, this is used for connecting
the absorbers in the proof of Lemma 2.32.3. Moreover, observe that all tight paths mentioned in
Lemma 2.22.2 and 2.32.3 are β-connectable. This allows us to connect them together into an almost
spanning cycle and the absorbing path in this cycle will absorb all the remaining vertices to complete
the Hamilton cycle.

Lemma 2.4 (Connecting Lemma). For every ε, β ą 0 there exist %, α ą 0 and n0 such that for
every p%, 1{4` ε, q-dense hypergraph H on n ě n0 vertices the following holds.

For every pair of disjoint ordered β-connectable pairs of vertices px, yq, pw, zq P V ˆ V there exists
an integer ` ď 15 such that the number of px, yq-pz, wq-paths with ` inner vertices is at least αn`.

In view of the construction given in Example 1.21.2, one can see that the 1{4 in the -density
assumption in Lemma 2.42.4 cannot be dropped. In that example, there are two classes of pairs
that cannot be connected by a tight path (namely the pairs in G and in G), even though they
are β-connectable. Hence, -density of at least 1{4 is required for Lemma 2.42.4.

Also Lemma 2.32.3 requires -density bigger than 1{4. In the proof of Lemma 2.32.3 this assumption
will be crucial for connecting the so-called absorbers to a tight path, which makes use of Lemma 2.42.4.
Moreover, the type of absorbers used here, leads to a ‘divisibility issue’. It is addressed in Lemma 6.46.4
for which we also employ the same density assumption.

We now deduce Theorem 1.31.3 from Lemmata 2.22.2 – 2.42.4.

Proof of Theorem 1.31.3. Given ε ą 0 we apply Lemma 2.32.3 and obtain %1, β1 and γ1. Lemma 2.22.2
applied with d “ 1{4 and γ “ mintγ1, ε{2u yields %2 and β2. Applying Lemma 2.42.4 with ε and

β “
1
8 mintβ1, β2u,

reveals α and %3. Finally we set

% “ mint%1, %2{8, %3u,

and let n be sufficiently large. Having fixed all constants, let H be a p%, 1{4` ε, q-dense hypergraph
on n vertices.
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We consider a random set R Ď V , in which each vertex is present independently with probability γ2.
For every positive integer ` ď 15 consider two pairs px, yq, pw, zq P V ˆ V between which there
are at least αn` paths with ` inner vertices. Let Y “ Y p`, px, yq, pz, wqq count the number of such
paths whose inner vertices are contained in R. We point out that Y is a function determined by n
independent random variables, each of which can influence the value of Y by at most n`´1. Therefore
a standard application of Azuma’s inequality (see [1010, Section 2.4]) implies that

P
ˆ

Y ď
γ2`

2 ¨ αn`
˙

“ expp´Ωpnqq ă 1
2 ¨

1
15n4 , (2.1)

for any fixed `, px, yq, and pw, zq. Moreover, by Markov’s inequality we have that

P
`

|R| ě 2γ2n
˘

ď
1
2 . (2.2)

Therefore there exists a realisation of R, which from now on will take over the name R, that
is not in the event considered in (2.22.2) and in any of the events considered in (2.12.1) (all 4-tuples of
vertices and values of `). Since γ1 ă γ, % ă %1, and |R| ă 2γ2n, Lemma 2.32.3 ensures that we can find
a β1-connectable absorbing path A of size smaller than γn and which does not intersect R.

Let V 1 “ V r pV pAq Y Rq. Since |V pAq Y R| ď 3γn ď n{2, the induced hypergraph HrV 1s

is p8%, 1{4` ε, q-dense. In particular, HrV 1s is p8δ, 1{4` ε, q-dense and since 8% ď %2, Lemma 2.22.2
implies that there exists a collection of at most 1{β2 paths with β2-connectable ends in HrV 1s that
cover all but at most γ2n vertices.

Set t “ t1{β2` 1u and let pPiqiPrts be any cyclic ordering of such paths together with the absorbing
path. Assume that we were able to find connections in R between the paths P1, P2, . . . , Pi, using
inner vertices from R only. Moreover, we make sure that each connection is made with at most 15
inner vertices. Let Ci be the path that begins with P1 and ends in Pi using those connections.
Therefore

|V pCiq XR| ď t ¨ 15 “ opnq.

Now, we want to show that we can connect Pi with Pi`1 to construct Ci`1. Observe that all the
tight paths from pP qiPrts are β-connectable. This follows from the choice β ď β1 for the absorbing
path A. From the paths given by Lemma 2.22.2 we know that they are β2-connectable in HrV 1s. Owing
to β ď β2{2 and |V 1| ě n{2 the β-connectibility follows.

Let pxi, yiq be the ending pair of Pi and pzi, wiq the starting pair Pi`1. Lemma 2.42.4 implies that,
for some `i ď 15, there exist at least αn`i tight pxi, yiq-pzi, wiq paths, each with `i inner vertices. By
the choice of R, the number of pxi, yiq-pzi, wiq paths of length `i ` 2 whose inner vertices lie in R is
at least γ2αn`i{2. Since at most |V pCiq XR|n`i´1 “ opn`iq such paths contain a vertex from Ci, for
sufficiently large n large enough we can find one tight path disjoint from Ci.

Finally, consider Ct the final cycle obtained in this process, by connecting Pt to P1. As Ct includes
all the tight paths in the almost covering the number of vertices not covered by Ct is at most

|V r V pCtq| ď |R| ` γ
2n ď 3γ2n.

This finishes the proof, since A can absorb these vertices into a new path with the same endings. �
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§3. Preliminary results and basic definitions

In this section we collect preliminary results and introduce necessary notation. Given η, d P r0, 1s
and a bipartite graph G “ pV1 Ÿ V2, Eq we say that G is pη, dq-regular if for every two sets of
vertices X Ď V1 and Y Ď V2 we have

|epX,Y q ´ d|X||Y || ď η|V1||V2| .

It is easy to see that every dense graph contains a linear sized bipartite regular subgraph, with
almost the same density. That can be proved by a simple application of Szemerédi’s Regularity
Lemma or alternatively by a more direct density increment argument (see [1414]).

Lemma 3.1. For all η, d ą 0 there exists some µ ą 0 such that for every n-vertex graph G

with epGq ě dn2{2, there exist disjoint subsets V1, V2 Ď V pGq, with |V1| “ |V2| “ rµns such that the
bipartite induced subgraph GrV1, V2s is pη, d1q-regular for some d1 ě d. �

For a set V , we denote by V p2q “ tU Ď V : |U | “ 2u the set of unordered pairs of elements in V .
For a hypergraph H “ pV,Eq recall its shadow BH is the subset of V p2q of those pairs that are
contained in some edge of H. For disjoint sets of vertices V1, V2 Ď V with a slight abuse of notation
we write BHrV1, V2s for the set of ordered pairs in V1 ˆ V2 that correspond to unordered pairs in the
shadow, i.e.,

BHrV1, V2s “
 

pv1, v2q P V1 ˆ V2 : tv1, v2u P BH
(

.

Given %, d ą 0, a set of ordered pairs of vertices P P V 2, and a subset X Ď V we say that H
is p%, d, q-dense over pX,P q if for every subset of vertices X 1 Ď X and every subset of pairs P 1 Ď P

we have

epX 1, P 1q ě d |X 1||P 1| ´ % |X||P | ,

which is a version of -density restricted to P and X. For the next lemma we also need the following
concept of restricted vertex neighbourhood. Given a vertex v P V and a set of ordered pairs P P V 2

we define its neighbourhood restricted to P by

Npv, P q “ tpx, yq P P : vxy P Eu .

Lemma 3.2. Let H “ pV,Eq be a hypergraph, X Ď V be a set of vertices, and P Ď V 2. If H
is p%, d, q-dense over pX,P q for some constants %, d ą 0, then

ˇ

ˇ

 

x P X : |Npx, P q| ă pd´?%q|P |
(
ˇ

ˇ ă
?
% |X| .

Proof. Let X 1 Ď X be the vertices with less than pd´?%q|P | neighbour pairs in P . The definition
of X 1 and the p%, d, q-density of H over pX,P q provide the following upper and lower bounds
on epX 1, P q

d|X 1||P | ´ %|X||P | ď epX 1, P q ď pd´
?
%q|P | ¨ |X 1|

and the desired bound on |X 1| follows. �
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The following result asserts that every hypergraph contains a subhypergraph with almost the same
density and such that every pair of vertices with positive codegree has at least Ωp|V |q neighbours.
This fact can be proved by removing iteratively the edges which contain a pair with small codegree
and we omit the details.

Lemma 3.3. For every β ą 0 and every n-vertex hypergraph H there is a hypergraph Hβ Ď H on the
same vertex set with epHβq ě epHq´βn3 such that for every pair of vertices x, y either dHβ px, yq “ 0
or dHβ px, yq ě βn. In particular, if we have dHβ px, yq ą 0, then px, yq is β-connectable in H. �

Let F and F 1 be two hypergraphs. We say that F contains a homomorphic copy of F 1 if there is a
function ϕ : V pF 1q Ñ V pF q such that for every edge xyz P EpF 1q we have that ϕpxqϕpyqϕpzq P EpF q.
We denote this fact as F 1 homÝÝÝÑ F and we recall the following well known consequence from Erdős [77].

Lemma 3.4. For every ξ ą 0 and k, ` P N there is ζ ą 0 and n0 P N such that the following
holds. Let F and F 1 be hypergraphs such that |V pF q| “ k and |V pF 1q| “ ` and F 1 hom

ÝÝÝÑ F . If a
hypergraph H on n ą n0 vertices contains at least ξnk copies of F , then H contains ζn` copies
of F 1. �

We denote the hypergraph with four vertices and three edges by Kp3q´
4 . We refer to the vertex of

degree three as the apex. Glebov, Kráľ, and Volec [99] showed that -density bigger than 1{4 yields
the existence of a, in fact of many copies of, Kp3q´

4 .

Theorem 3.5 (Glebov, Kráľ & Volec, 2016). For every ε ą 0 there exist % and ξ ą 0 such that
every sufficiently large p%, 1{4` ε, q-dense n-vertex hypergraph contains ξn4 copies of Kp3q´

4 . �

§4. Almost covering

In this section we present a very straightforward proof of Lemma 2.22.2.

Proof of Lemma 2.22.2. Given d, γ ą 0 take β and % such that

β “ % “
dγ6

13 .

We show that a maximal collection of β-connectable tight paths, each of which having at least βn
vertices, must cover all but at most γ2n vertices. We do that by showing that every set X Ď V pHq

with at least γ2n vertices contains a β-connectable tight path of size βn. Indeed, the p%, d, q-density
implies that in such a set X, we have

epXq ě
d|X|3

6 ´ %n3,

where we discounted the ordering of triples. In HrXs we remove, iteratively, every edge that contains
an (unordered) pair of vertices with codegree smaller than βn. In this way, we remove at most βn3
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edges and get a hypergraph with at least

epXq ´ βn3 ě
d|X|3

6 ´ %n3 ´ βn3

ě

ˆ

dγ6

6 ´ %´ β

˙

n3,

edges. Owing to the choice of β and % this hypergraph is not empty. Now a tight path with βn
vertices can be found in a greedy manner. Moreover, if px, yq is a pair contained in such path, then
we have that the set

Zxy “ tz P V : xyz P E and dpy, zq ě βnu

has at least βn vertices. �

§5. Connecting Lemma

We dedicate this section to prove the Connecting Lemma (Lemma 2.42.4). The proof splits into
several lemmata. The Connecting Lemma asserts that every ordered connectable pair can be
connected to any other ordered connectable pair. In a first step in Lemmata 5.15.1 and 5.35.3 we show
that there are many connections between large sets of unordered pairs (without specifying the order
of the ending pairs). In fact, these connection can be achieved by paths consisting of only two edges,
which we refer to as cherries (see Definition 5.25.2 below). On the price of extending the length by
at most two, in Lemma 5.45.4 we establish that one can even fix the order of one of the sets of given
pairs. On the other hand, this is complemented by Lemma 5.75.7 showing that there are many pairs of
unordered pairs that can be connected in any orientation. We call such pairs of pairs turnable (see
Definition 5.55.5 below).

For the proof of the Connecting Lemma we can now start with any given connectable pair px, yq
and move to its second neighbourhood, which is a large set of ordered pairs. From that set we
shall reach many turnable pairs. Similarly, from any given ending pair pz, wq we also reach many
turnable pairs. These paths give the turnable pairs an orientation, but since the turnable pairs
can be connected in any orientation, we find the desired tight px, yq-pz, wq-paths. The detailed
presentation of this argument renders the proof of the Connecting Lemma, which we defer to the
end of this section.

Lemma 5.1. For all ξ, ε P p0, 1s there exist η, % ą 0 such that the following holds for sufficiently
large m.

Suppose V1, V2, V3 are pairwise disjoint sets of size m and G “ pV1 Ÿ V2, P q is an pη, ξq-regular
bipartite graph. If H “ pV1 Ÿ V2 Ÿ V3, Eq is a 3-partite hypergraph that is p%, 1{4 ` ε, q-dense
over pV3, P q, then

ˇ

ˇBHrV1, V3s
ˇ

ˇ`
ˇ

ˇBHrV2, V3s
ˇ

ˇ ě p1` εqm2 .

Proof. Given ξ and ε we set

% “
´ ε

21

¯2
and η ď

ξε

36 .



10 P. ARAÚJO, S. PIGA, AND M. SCHACHT

Let G “ pV1 Ÿ V2, P q and H “ pV1 Ÿ V2 Ÿ V3, Eq be given. Since G is bipartite we may view P as
a subset of V1 ˆ V2 and, hence, as a set of ordered pairs. Lemma 3.23.2 applied to V3 and P ensures
for the hypergraph H that there are at most ?%m vertices in V3 with less than p1{4` ε´?%q|P |
neighbour pairs in P . We remove such vertices from V3 and let V 13 be the resulting subset of V3.

Consider a fixed vertex v3 P V
1

3 . By the definition of V 13 , we have

|Npv3, P q| ě

ˆ

1
4 ` ε´

?
%

˙

|P | ě

ˆ

1
4 `

15
16ε

˙

|P | . (5.1)

For i “ 1, 2 we consider the neighbourhood of v3 in BHrVi, V3s defined by

Nipv3q “
 

vi P Vi : pvi, v3q P BHrVi, V3s
(

and note that
|Npv3, P q| ď eG

`

N1pv3q, N2pv3q
˘

.

Consequently, the pη, ξq-regularity of G yields

|Npv3, P q| ď ξ|N1pv3q||N2pv3q| ` ηm
2 . (5.2)

Combining (5.15.1) and (5.25.2) with the lower bound on |P | provided by the regularity of G we obtain

4ξ|N1pv3q||N2pv3q| ě
´

1` 15
4 ε

¯

|P | ´ 4ηm2 ě
´

1` 15
4 ε

¯

pξ ´ ηqm2 ´ 4ηm2 ě
´

1` 7
2ε

¯

ξm2 ,

where the last inequality makes use of the choice of η. Hence, the AM-GM inequality tells us
`

|N1pv3q| ` |N2pv3q|
˘2
ě 4

ˇ

ˇN1pv3q
ˇ

ˇ

ˇ

ˇN2pv3q
ˇ

ˇ ě

´

1` 7
2ε

¯

m2

and, consequently, we arrive at

|N1pv3q| ` |N2pv3q| ě
´

1` 7
2ε

¯1{2
m ě

´

1` 11
10ε

¯

m.

Finally, summing for all vertices v3 P V
1

3 we obtain the desired lower bound
ˇ

ˇBHrV1, V3s
ˇ

ˇ`
ˇ

ˇBHrV2, V3s
ˇ

ˇ ě
ÿ

v3PV 1
3

`

|N1pv3q| ` |N2pv3q|
˘

ě

´

1` 11
10ε

¯

m ¨ |V 13 |

ě

´

1` 11
10ε

¯

`

1´?%
˘

m2

ě p1` εqm2 ,

where we used the choice of % for last inequality. �

Tight paths of length two will play a special rôle in our proof and the following notation will be
useful.

Definition 5.2. Given a hypergraph H “ pV,Eq and disjoint sets p, q P V p2q, we say that the
edges xyz, yzw P E form a pp, qq-cherry, if p “ tx, yu and q “ tz, wu.

Moreover, given two sets P , Q Ď V p2q, we say that edges e, e1 P E form a pP,Qq-cherry, if they
form a pp, qq-cherry for some disjoint sets p P P and q P Q.
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The next lemma asserts that in -dense hypergraphs with density larger than 1{4 large sets of
pairs induce many cherries.

Lemma 5.3. For every ξ, ε P p0, 1s there exist %, ν ą 0 such that the following holds for every
sufficiently large p%, 1{4 ` ε, q-dense hypergraph H “ pV,Eq. For all sets P , Q Ď V p2q of size at
least 3ξn2 there are at least νn4 pP,Qq-cherries.

Proof. Given ξ and ε we apply Lemma 5.15.1 and we obtain η and %1. Without loss of generality we
may assume that η ď ξ{2. Moreover, Lemma 3.13.1 applied with η and d “ ξ yields some µ ą 0 and
we fix the desired constants % and ν by

% “
µ3ξ

250%
1 and ν “ 9%2µ4ε .

Let H “ pV,Eq and P , Q Ď V p2q satisfy the assumptions of the lemma.
We consider a random balanced bipartition of A Ÿ B of V and let PA “ tp P P : p Ď Au

and QB “ tq P Q : q Ď Bu. A standard application of Chebyshev’s inequality shows that there
exists a balanced partition of V such that |PA|, |QB| ě ξn2{2. We apply Lemma 3.13.1 separately
to the graphs pA,PAq and pB,QBq and obtain four pairwise disjoint vertex sets A1, A2 Ď A and
B1, B2 Ď B each of size m ě µn{2 such that the induced bipartite graphs P rA1, A2s and QrB1, B2s

are both η-regular with density at least ξ.
Next for i “ 1, 2 we consider the 3-partite subhypergraph HrBi, P rA1, A2ss on A1 ŸA2 ŸBi with

the edge set
 

tx, y, zu P V p3q : x P Bi and ty, zu P EpP rA1, A2sq
(

.

Lemma 3.33.3 applied to HrBi, P rA1, A2ss with β “ % yields a subhypergraph H i,P
% . We want to prove

that H i,P
% is p%1, 1{4` ε, q-dense over pBi, P rA1, A2sq. Since we removed at most %p3mq3 edges from

HrBi, P rA1, A2ss the error term in the -density condition of H i,P
% can add up to at most

%n3 ` %p3mq3 ď 28%n3 ď %1 ¨ |Bi| ¨ epP rA1, A2sq .

This implies that H i,P
% is p%1, 1{4 ` ε, q-dense over pBi, P rA1, A2sq. Similarly, for i “ 1, 2 we

also define the 3-partite hypergraph H i,Q
% with vertex partition B1 Ÿ B2 Ÿ Ai and note that it is

p%1, 1{4` ε, q-dense over pAi, QrB1, B2sq.
Applying Lemma 5.15.1 to the bipartite graph P rA1, A2s and the 3-partite hypergraph H1,P

% implies
ˇ

ˇBH1,P
% rA1, B1s

ˇ

ˇ`
ˇ

ˇBH1,P
% rA2, B1s

ˇ

ˇ ě p1` εqm2.

Moreover, three further applications of Lemma 5.15.1 to P rA1, A2s with H2,P
% and to QrB1, B2s with

H1,Q
% and with H2,Q

% show that
2
ÿ

i“1

´

ˇ

ˇBH i,P
% rA1, Bis

ˇ

ˇ`
ˇ

ˇBH i,P
% rA2, Bis

ˇ

ˇ

¯

`

2
ÿ

i“1

´

ˇ

ˇBH i,Q
% rB1, Ais

ˇ

ˇ`
ˇ

ˇBH i,Q
% rB2, Ais

ˇ

ˇ

¯

ě 4p1` εqm2.

In particular, rearranging the terms shows that
2
ÿ

i“1

2
ÿ

j“1

´

ˇ

ˇBHj,P
% rAi, Bjs

ˇ

ˇ`
ˇ

ˇBH i,Q
% rBj , Ais

ˇ

ˇ

¯

ě 4p1` εqm2
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and, hence, there are some indices i0, j0 P t1, 2u such that
ˇ

ˇBHj0,P
% rAi0 , Bj0s

ˇ

ˇ`
ˇ

ˇBH i0,Q
% rBj0 , Ai0s

ˇ

ˇ ě p1` εqm2 .

Consequently, the set of ordered pairs

R “
 

ty, zu P V p2q : py, zq P BHj0,P
% rAi0 , Bj0s and pz, yq P BH i0,Q

% rBj0 , Ai0s
(

has size at least εm2.
Finally, we note that every ty, zu P R has positive degree in both hypergraphs Hj0,P

% and H i0,Q
%

and, hence, these degrees are at least 3%m. Therefore, there are at least 9%2m2 distinct vertices
x P A3´i0 and w P B3´j0 such that xyz and yzw form a pP,Qq-cherry. Summing over all pairs in R
yields at least

εm2 ¨ 9%2m2 ě νn4

pP,Qq-cherries in H. �

The following corollary allows us to find many connections between a large sets of unordered and
a large set of ordered pairs.

Lemma 5.4. For every ξ, ε P p0, 1s there exist ζ, % ą 0 such that the following holds for every
sufficiently large p%, 1{4` ε, q-dense n-vertex hypergraph H “ pV,Eq.

Let P Ď V ˆ V be a set of ordered pairs and let Q Ď V p2q be a set of unordered pairs, each of size
at least ξn2. There is an ` P t2, 4u such that there are at least ζn``2 tight paths of length ` which
start with an ordered pair from P and ends in (some ordering of) with a pair from Q.

Proof. Given ξ and ε we apply Lemma 5.35.3 with ξ{6 and ε and obtain % and ν. Lemma 3.43.4 applied
for ν{2, 4, and 6 (in place of ξ, k, and ` in Lemma 3.43.4) yields the promised constant ζ ą 0. With
out loss of generality we may assume that ζ ă ν{2 and let n be sufficiently large.

For a given set of ordered pairs P Ď V ˆ V let P be the set of unordered pairs obtained from P

by ignoring the order. In particular, |P | ě |P |{2 ě ξn2{2 and Lemma 5.35.3 asserts that there are νn4

different pP ,Qq-cherries. That is to say there are νn4 tight paths on four vertices of the form xyzw

where tx, yu P P and tz, wu P Q.
If for ζn4 of those cherries we have that px, yq P P , then the lemma follows with ` “ 2. Hence,

we may assume that for at least pν ´ ζqn4 ě νn4{2 of those tight paths we (only) have py, xq P P .
Consequently, Lemma 3.43.4 yields ζn6 blowups of these two edge paths where the vertices y and z are
doubled, i.e., H contains at least ζn6 6-tuples of distinct vertices px, y1, y2, z1, z2, wq such that for
every i, j P t1, 2u we have

pyi, xq P P , tzj , wu P Q , and xyizjw is a tight path with two edges.

In particular, every such 6-tuple induces a tight path y1xz1y2wz2 which starts with an ordered pair
from P and ends in an unordered pair from Q and this concludes the proof of the lemma. �
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For establishing the Connecting Lemma (Lemma 2.42.4) we shall extend Lemma 5.45.4 in such a way
that we can connect large sets P and Q, where both of them consist of ordered pairs. For that
certain blowups of Kp3q´

4 s will be useful and we introduce the following notation.

Definition 5.5. We say a 7-tuple of distinct vertices pa1, a2, a3, b1, b2, c, dq P V
7 is a turn in a

hypergraph H “ pV,Eq if for every i P t1, 2, 3u and j P t1, 2u the set tai, bj , c, du spans a copy of
a Kp3q´

4 in H with ai being the apex.

Combining Theorem 3.53.5 and Lemma 3.43.4 shows that the hypergraphs with -density bigger than
1{4 contain many turns. Moreover, we observe that in a turn T the tight paths

a1b1ca2b2 , a1b1ca3db2a2 , b1a1cda2b2 , and b1a1cb2a2 (5.3)

with at most 3 inner vertices connect the pairs ta1, b1u and ta2, b2u in all four possible orientations.
This motivates the following definition.

Definition 5.6. For a hypergraph H “ pV,Eq we say two disjoint unordered pairs q, q1 P V p2q are
pϑ,Lq-turnable, if for every ordering pq1, q2q of q and every ordering pq11, q12q of q1 there exists some
positive integer ` ď L such that the number of tight pq1, q2q-pq11, q12q-paths in H with ` inner vertices
is at least ϑ|V |`.

It follows from (5.35.3) that pairs ta1, b1u and ta2, b2u that are contained in Ωp|V |3q turns are
pϑ, 3q-turnable for some sufficiently small ϑ ą 0. The following variation of this fact, will be useful
in the proof of the Connecting Lemma.

Lemma 5.7. For every ε P p0, 1s there exist ϑ, % ą 0 such that the following holds for every
sufficiently large p%, 1{4` ε, q-dense hypergraph H “ pV,Eq.

There exists a set Q Ď V p2q of size at least ϑ|V |2 such that for every q P Q there exists a set
Q1pqq Ď V p2q of size at least ϑ|V |2 such that q and q1 are pϑ, 3q-turnable for every q1 P Q1pqq.

Proof. Let H “ pV,Eq be a sufficiently large p%, 1{4 ` ε, q-dense hypergraph on n vertices. A
combined application of Theorem 3.53.5 and Lemma 3.43.4 yields a set T Ď V 7 of at least ζn7 turns
pa1, a2, a3, b1, b2, c, dq in H for some sufficiently small ζ “ ζpεq ą 0 and we shall deduce the conclusion
of the lemma for

ϑ “
ζ

8 .

For every pair pa, bq P V ˆ V and i P t1, 2u let Tipa, bq be the set of such turns where a and b play
the rôles of ai and bi, respectively. We consider the set

T ‹ “
 

pa, a1, a3, b, b
1, c, dq P T : |T1pa, bq X T2pa

1, b1q| ě ζn3{2
(

and note that |T ‹| ě ζn7{2. By a standard averaging argument there are at least ζn2{4 pairs
pa, bq P V ˆ V for which we have

|T1pa, bq X T ‹| ě ζ

4n
5
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and we denote the set of these ordered pairs by R. Note that for every pair pa, bq P R there is a set
R1pa, bq Ď V ˆ V with

|R1pa, bq| ě
ζ

4n
2 such that

ˇ

ˇT1pa, bq X T2pa
1, b1q

ˇ

ˇ ě
ζ

2n
3 (5.4)

for every pa1, b1q P R1pa, bq. Finally, let Q be the set of unordered pairs derived from R, i.e.,

Q “
 

tq1, q2u P V
p2q : pq1, q2q P R

(

and for every q “ tq1, q2u set

Q1pqq “
 

tq11, q
1
2u P V

p2q : pq11, q12q P R1pq1, q2q YR
1pq2, q1q

(

.

Clearly,

|Q| ě
|R|

2 ě
ζ

8n
2 “ ϑn2 and Q1pqq

(5.45.4)
ě

ζ

8n
2 “ ϑn2

and the required number of tight paths for every orientation of q P Q and q1 P Q1pqq follows from (5.35.3)
and (5.45.4). �

Roughly speaking, the proof of Lemma 2.42.4 follows from Lemmata 5.45.4 and 5.75.7. The definition
of connectable pairs allows us to move from the given ordered pairs px, yq and pw, zq, that need
to be connected, to large sets of ordered pairs P , P 1, by considering their second neighbourhoods.
Moreover, Lemma 5.75.7 yields sets Q Ď V p2q and Q1pqq Ď V p2q for every q P Q of turnable pairs.
Applying Lemma 5.45.4 first to P and Q and then to P 1 and Q1pqq for all q P Q leads to the desired
tight px, yq-pz, wq-paths.

Proof of Lemma 2.42.4. For given ε, β ą 0 let ϑ and %1 be the constants provided by Lemma 5.75.7. We
set

ξ “ mintϑ, β2u

and Lemma 5.45.4 applied with ξ and ε yields ζ and %2. Finally, we define the promised constants

% “ mint%1, %2u and α “
ζ2ϑ

13 .

Let H “ pV,Eq be a sufficiently large p%, 1{4` ε, q-dense hypergraph on n vertices and let px, yq,
pw, zq be two disjoint β-connectable pairs. Consider the second neighbourhoods of these pairs defined
by

P “ tpu, vq P V ˆ V : xyu, yuv P Eu and P 1 “ tpu1, v1q P V ˆ V : wzu1, zu1v1 P Eu . (5.5)

Owing to the β-connectability, both sets P and P 1 have size at least β2n2 ě ξn2.
Next, let Q Ď V p2q and Q1pqq Ď V p2q for every q P Q be the sets of size at least ϑn2 ě ξn2

provided by Lemma 5.75.7. For every q P Q we denote by P4pqq (resp. P6pqq) the number of tight
pu, vq-pq1, q2q-paths having 4 (resp. 6) vertices and pu, vq P P and tq1, q2u “ q. Moreover, we
normalise these numbers by

ηP pqq “ max
!P4pqq

n4 ,
P6pqq

n6

)
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and note that Lemma 5.45.4 applied to P and Q ensures
ÿ

qPQ

ηP pqq ě ζ . (5.6)

Analogously, we define P 14pq1q, P 16pq1q, and ηP 1pq1q for every q1 P
Ť

qPQQ
1pqq and Lemma 5.45.4 applied

to P 1 and Q1pqq implies
ÿ

q1PQ1pqq

ηP 1pq1q ě ζ . (5.7)

for every q P Q. Recall, that the paths accounted for in (5.65.6) and (5.75.7) induce an ordering of the
vertices in q and in q1. However, by Lemma 5.75.7 the pairs q and q1 are pϑ, 3q-turnable for every
q P Q and q1 P Q1pqq, which means that these pairs can be connected for any possible orientation.
Consequently, there is some ` with

5 ď ` ď maxt4, 6u `maxt1, 2, 3u `maxt4, 6u “ 15

such that the number of px, yq-pz, wq-walks in H is at least

n`

12 ¨
ÿ

qPQ

ηP pqq ¨ ϑ ¨
ÿ

q1PQ1pqq

ηP 1pq1q
(5.75.7)
ě

n`

12 ¨
ÿ

qPQ

ηP pqq ¨ ϑ ¨ ζ
(5.65.6)
ě

ζ2ϑ

12 n
` .

At most Opn`´1q of these walks might not be a path and, hence, the lemma follows for sufficiently
large n. �

§6. Absorbing path

We dedicate this section to the proof of Lemma 2.32.3. Similarly as in [1717] the absorbers we consider
here have two parts. Moreover, we use an idea of Polcyn and Reiher [1515], which reduces the abundant
existence of absorbers to a degenerate Turán problem for the price that we can only absorb exactly
three vertices at each time.

Consider the complete 3-partite hypergraph Kp3q
3,3,3 with parts Ai “ txi, yi, ziu, for every i “ 1, 2, 3.

Note that this hypergraph contains the tight paths

x1x2x3y1y2y3z1z2z3 , (6.1)

and
x1x2x3z1z2z3 . (6.2)

This means that from every copy of Kp3q
3,3,3, ordered as a tight path like in (6.16.1), we may remove

the three inner vertices y1, y2, y3 to obtain a tight path with the same ends. Since we only consider
dense hypergraphs, we can guarantee that many copies of Kp3q

3,3,3 exist. In other words, in such a
situation the tight path x1x2x3z1z2z3 could absorb the three vertices y1, y2, and y3. However, not
every triple might be contained in a Kp3q

3,3,3 and this will be addressed by the second part of the
absorbers used here.

Suppose we want to absorb some arbitrary vertices v1, v2, and v3. The idea, similarly as in [1717], is
to exchange vi with yi contained in some Kp3q

3,3,3. Suppose we have found a Kp3q
3,3,3 as described above,

but additionally we find a path (as a graph) on four vertices with edges from NHpviq X NHpyiq
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disjointly for each i “ 1, 2, 3. We argue that this whole structure can absorb v1, v2, v3. Indeed,
if aibicidi is a path on four vertices with edges from NHpviq XNHpyiq, then both P pviq “ aibivicidi

and P pyiq “ aibiyicidi are tight paths in the hypergraph and with the same endings. Moreover,
the minimum degree and the uniform density imply that for each vertex v P V , most vertices of V
have Ωpn2q common neighbours with v, which is enough to find such paths.

Therefore, if we choose to absorb v1, v2, v3, we will consider the tight paths P pv1q, P pv2q, and P pv3q

and the tight path of Kp3q
3,3,3 as in (6.16.1). On the other hand, if we choose not to absorb them, then

we consider the tight paths P py1q, P py2q, and P py3q and the tight path of Kp3q
3,3,3 as in (6.26.2). We will

also show that for each triple of vertices, we can find many of these configurations, so that we can
choose a small amount of them that still can absorb every triple and also connect them into a single
tight path. Observe that this absorbing path can only absorb sets of vertices with size divisible
by three, an issue with which we deal later. First we prove that for every triple there are many
absorbers.

Definition 6.1. Let H “ pV,Eq be a hypergraph and pv1, v2, v3q P V
3. We say

A “ pK,P1, P2, P3q P V
9 ˆ V 4 ˆ V 4 ˆ V 4 ,

with K “ px1, x2, x3, y1, y2, y3, z1, z2, z3q and Pi “ pai, bi, ci, diq is an absorber for pv1, v2, v3q if the
ordered sets

(i ) x1x2x3y1y2y3z1z2z3, x1x2x3z1z2z3,
(ii ) aibivicidi and aibiyicidi for i “ 1, 2, 3

induce tight paths in H. All hyperedges of those paths that do not include a vertex from tv1, v2, v3u

are called internal edges of the absorber A.

Formally absorbers are defined to be four tuples. However, sometimes it will be convenient to
view them as 21-tuples of vertices.

Lemma 6.2. For all d, ε P p0, 1s there exist %, ξ ą 0 such that for sufficiently large n the following
holds.

For every p%, d, q-dense hypergraph H “ pV,Eq on n vertices with δ1pHq ě εn2 and every triple
T “ pv1, v2, v3q P V

3 of distinct vertices there are at least ξn21 absorbers for T .

Proof. Given d and ε we define some auxiliary constant ζ “ pd{2q27{3 and set

% “
1
36

ˆ

d

2

˙54
and ξ “

ζd9ε9

211 .

Let H “ pV,Eq be a p%, d, q-dense hypergraph on n vertices and consider some triple of vertices
T “ pv1, v2, v3q P V

3.
Three applications of Lemma 3.23.2 each with X “ V and for i P r3s with the set of ordered pairs

 

pu,wq : tu,wu P NHpviq
(



LOCALISED CODEGREE CONDITIONS FOR TIGHT HAMILTON CYCLES 17

tells us, that there are at most 3?%n bad vertices v P V that may fail to satisfy

ˇ

ˇNHpvq XNHpviq
ˇ

ˇ ě pd´
?
%q
ˇ

ˇNHpviq
ˇ

ˇ ě pd´
?
%qδ1pHq ě

d

2εn
2 (6.3)

for some i P r3s. Moreover, the p%, d, q-density of H implies that the edge density of H is at
least d ´ 2% ą d{2 and since the extremal number of any fixed 3-partite hypergraph is opn3q we
have Kp3q

3,3,3 Ď H for sufficiently large n. In fact, the standard proof of this fact from [77] yields at
least ppd{2q27 ´ op1qqn9 such copies. Consequently, for sufficiently large n there are at least

ˆ

´d

2

¯27
´ op1q

˙

n9 ´ 3?%n ¨ n8 ě ζn9

copies of Kp3q
3,3,3 in H that contain no bad vertex. Let K “ KT Ď V 9 be the set of these Kp3q

3,3,3 in H.
Consider some K “ px1, x2, x3, y1, y2, y3, z1, z2, z3q P K. Since none of the vertices of K is bad, for

every vertex v from K inequality (6.36.3) holds for every i P r3s. In particular, for every i P r3s we have
|NHpyiq XNHpviq| ě dεn2{2 and it follows from [33] that there exist at least ppdε{2q3´ op1qqn4 paths
on four vertices with edges from NHpyiq XNHpviq. Consequently, for sufficiently large n, there exist
at least

|K| ¨
ˆ

´d3ε3

8 ´ op1q
¯

n4
˙3
ě ζn9 ¨

d9ε9

210 n
12 ě 2ξn21

4-tuples A “ pK,P1, P2, P3q P V
9 ˆ V 4 ˆ V 4 ˆ V 4 with Pi inducing a path in NHpyiq X NHpviq

for i “ r3s. Such an A may only fail to be an absorber for T , if it contains some vertex from T itself
or if its 21 vertices are not distinct. However, since there are at most Opn20q such “degenerate” A’s
the lemma follows for sufficiently large n. �

Note that for the proof of Lemma 6.26.2 positive -density was sufficient. However, to address the
aforementioned divisibility issue, we will show that the hypergraphs H considered here contain a
copy of C8p4q, the 4-blow-up of the tight cycle on 8 vertices. For the proof of that, we make use of
the assumption that the -density of H is bigger than 1{4.

The C8p4q is formed by 8 cyclicly ordered independent sets tei, fi, gi, hiuiPr8s such that the only
edges are the ones with vertices from three consecutive such sets. Note that C8p4q contains the tight
path

e1e2 . . . e8f1f2 . . . f8g1g2 . . . g8h1h2 . . . h8. (6.4)

Moreover, removing the sets tfiuiPr8s or tfi, giuiPr8s from the path in (6.46.4) leads to tight paths with
the same ends in C8p4q with 24 or 16 vertices, respectively. We also remark that 16, 24 and 32 are
congruent to 1, 0 and 2 modulo 3, respectively. Therefore, if we connect such a tight path to the
absorbing path, we can decide to remove some of the vertices so that the size of the leftover set is
divisible by 3.

Lemma 6.3. For all ε ą 0 there exist %, ϑ ą 0 such that every sufficiently large p%, 1{4` ε, q-dense
hypergraph H “ pV,Eq contains ϑ|V |32 copies of C8p4q.
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Proof. Given ε ą 0 we apply Theorem 3.53.5 to obtain %1 and ξ. Then, the application of Lemma 5.35.3
to ξ{6 and ε yields %2 and ν. Set % “ mint%1, %2u and let n be sufficiently large.

Let H “ pV,Eq be a p%, 1{4 ` ε, q-dense hypergraph on n vertices. In view of Lemma 3.43.4 it
suffices to show that H contains ζn8 copies of C8 for some ζ ą 0.

Theorem 3.53.5 implies that H contains at least ξn4 copies of Kp3q´
4 . Let R be the set of ordered

pairs pa, xq such that both vertices are contained in at least ξn2{2 of these Kp3q´
4 with a being the

apex. By double counting we infer |R| ě ξn2{2.
For every pa, xq P R, let Pa,x Ď V p2q be those pairs ty, zu that span such a copy of Kp3q´

4 together
with a and x. An application of Lemma 5.35.3 to P “ Q “ Pa,x yields at least νn4 pP,Qq-cherries, i.e.,
tight paths with 4 vertices starting and ending at a pair from Pa,x.

Let F be the hypergraph with vertex set ta, x, y, y1, z, z1u such that the vertices ta, x, y, zu
and ta, x, y1, z1u span copies of Kp3q´

4 with apex a and it contains a pty, zu, ty1, z1uq-cherry. Observe
that since y and z (resp. y1 and z1) play a symmetric role in Kp3q´

4 , regardless of the orientation
of the pairs ty, zu and ty1, z1u in the cherry the resulting hypergraph is isomorphic. Without loss
of generality we will assume that the cherry is a tight path of the form yzy1z1. By the reasoning
above, H contains at least

|R| ¨ νn4 ě
ξ

2νn
6

copies of F . We argue that there is a homomorphism of C8 in F . Indeed, if we consider the vertices
of F in the following cyclic ordering

xayzy1z1ay1

one can check that every consecutive triple forms an edge in F . Since there are at least Ωpn6q copies
of F in H, then by Lemma 3.43.4 and taking ζ small enough, we have that there are at least ζn8 copies
of C8. �

We are now ready to prove Lemma 2.32.3.

Proof of Lemma 2.32.3. Given ε ą 0 the constants appearing in this proof will satisfy the following
hierarchy

1 ą ε " ξ , ϑ " β " % , α " γ1 ě γ "
1
n
, (6.5)

where the auxiliary constants ξ, ϑ, and α are provided by Lemmata 6.26.2, 6.36.3, and 2.42.4 and it is easy to
check that (6.56.5) complies with the quantification of these lemmata. Let H be a p%, 1{4` ε, q-dense
hypergraph with δ1pHq ě εn2 and let R be a subset of V with at most 2γ2n vertices. Fix the
subhypergraph Hβ Ď H provided by Lemma 3.33.3.

For T P V 3, let AT be the set of those absorbers for T in H that have no vertex in R and all its
36 internal edges from Hβ. It follows from Lemma 6.26.2 applied with d “ 1{4` ε and ε that

|AT | ě ξn21 ´ 21 |R|n20 ´ 6 ¨ 36
`

epHq ´ epHβq
˘

n18 ě ξn21 ´ 42 γ2n21 ´ 216βn21 (6.56.5)
ě

ξ

2n
21 .
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Let A “
Ť

T AT be the union over all triples T P V 3 and consider a random collection of
absorbers C Ď A in which each element of A is present independently with probability

p “
γ4{3n

2|A| .

Since E|A| “ p|A|, Markov’s inequality ensures that

P
`

|C| ě γ4{3n
˘

ď
1
2 . (6.6)

Moreover, for every T P V 3 we have

E|C XAT | “ p|AT | ě
γ4{3n

2|A| ¨
ξn21

2 ě
γ4{3ξn

4
(6.56.5)
ě 4γ2n ,

Chernoff’s inequality combined with the union bound over all triples yields

P
`

DT P V 3 : |C XAT | ă 3γ2n
˘

ď op1q . (6.7)

Letting Y be the number of pairs of distinct absorbers A, A1 P C that share a vertex we note

EY “ p2 ¨ n21 ¨ 212 ¨ n20 “
γ8{3n2

4|A|2 ¨ 441n41 ď
441γ8{3n

ξ2

(6.56.5)
ď

γ2n

4
and by Markov’s inequality, we have

PpY ě γ2nq ď
1
4 . (6.8)

Consequently, with positive probability none of the bad events from (6.66.6), (6.76.7), and (6.86.8) happen.
In particular, there exists a realisation of C such that

|C| ă γ4{3n , |C XAT | ě 3γ2n for every T P V 3, and |Y pCq| ă γ2n .

For every pair of absorbers accounted in Y pCq we remove one of the involved absorbers in an arbitrary
way and obtain a subset B Ď C of pairwise vertex disjoint absorbers satisfying

|B| ď |C| ă γ4{3n and |B XAT | ą |C XAT | ´ γ
2n ě 2γ2n for every T P V 3.

Recall that if the absorbing path would only contain the absorbers from B, then it could only absorb
sets U with a cardinality that is divisible by 3. We address this divisibility issue by adding a copy
of C8p4q to the path. Lemma 6.36.3 guarantees at least ϑn32 copies of C8p4q in H. Similarly, as for the
estimate of AT , we infer that there is one such C8p4q which is vertex disjoint from the set R and
from all absorbers from B and which only contains edges from Hβ. In fact, this follows from

ϑn32 ´ 32 |R|n31 ´ 21 |B|n31 ´ 6 ¨ epC8p4qq
`

epHq ´ epHβq
˘

n29

ě ϑn32 ´ 64 γ2n32 ´ 21 γ4{3n32 ´ 3072βn32 (6.56.5)
ą 0 .

Fix an ordering of the vertices of such a C8p4q that induces a tight path (see, e.g., (6.46.4)) and denote
this path by PC .

In order to obtain the final absorbing path, each absorber pK,P1, P2, P3q P B will be viewed
as a collection of four tight paths: x1x2x3z1z2z3 and aibiyicidi, for i “ 1, 2, 3, as in Definition 6.16.1.
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Therefore, together with joining PC we have to connect t “ 4|B|`1 tight paths to build the promised
absorbing path A. For each of the connections we will appeal to Lemma 2.42.4 and each application
will require to add up at most 15 inner vertices.

Let pPiqiPrts be an arbitrary enumeration of all these tight paths that need to be connected. We
continue in an inductive manner starting with A1 “ P1, let Aj be the already constructed tight path
containing Pi for every i ď j. Since every connection requires at most 15 inner vertices and the
longest path in pPiqiPrts has 32 vertices we have

|V pAjq| `
t
ÿ

i“j`1
|V pPiq| ď 15pj ´ 1q ` 32t ď 47t ď 47

`

4|B| ` 1
˘

ď 47
`

4γ4{3n` 1
˘

ď γn . (6.9)

Suppose now that we want to connect Pj , which ends in px, yq, to Pj`1, which starts at pz, wq.
Since all tight paths Pi with i P rts have its edges in Hβ, by Lemma 3.33.3 they are β-connectable.
Therefore, Lemma 2.42.4 implies that there are at least αn` tight paths, with ` ď 15 inner vertices,
connecting px, yq with pz, wq in H. Consequently, in view of (6.96.9) and |R| ď 2γ2n our choice of γ in
(6.56.5) shows that at least one of such connecting paths must be vertex disjoint from

V pAjq Y
t
ď

i“j`1
V pPiq YR ,

which concludes the inductive step and proves the existence of the tight path Aj`1.
Finally, let A “ At be the final tight path and let U Ď V r V pAq with |U | ď 3γ2n. First we

remove 0, 8 or 16 vertices from PC in A and reallocate them to U to get a set U 1 with size divisible
by three. Moreover |U 1| ď 3γ2n` 16 ď 3pγ2n` 6q and, hence, U 1 can be split into at most γ2n` 6
disjoint triples. Since each triple has at least 2γ2n ą γ2n` 6 absorbers in A, we can greedily assign
one for each and absorb all of them into A. �

§7. Proof of Theorem 1.41.4

In this section we discuss the few modifications necessary in the proof of Theorem 1.31.3 in order to
prove Theorem 1.41.4. Recall that both theorems have the same minimum vertex degree assumption.
However, where Theorem 1.41.4 requires the given hypergraph H to be -dense for some positive density,
Theorem 1.31.3 requires -density bigger than 1{4. In other words, the uniform density assumptions of
both theorems are incomparable.

The proof of Theorem 1.31.3 consist of three main parts, namely Lemmata 2.22.2 – 2.42.4. Observe that
Lemma 2.22.2 can be applied directly under the conditions of Theorem 1.41.4, but for Lemmata 2.32.3
and 2.42.4 we have the assumption of -density at least 1{4 which is not provided by Theorem 1.41.4.

We start with the discussion of the Connecting Lemma in the context of Theorem 1.41.4 in the next
section and we defer the discussion of the adjustments for the Absorbing Path Lemma (Lemma 2.32.3)
to Section 7.27.2.
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7.1. Connecting Lemma for Theorem 1.41.4. The following lemma will play the rôle of Lemma 2.42.4
in the proof of Theorem 1.31.3.

Lemma 7.1 (Connecting Lemma for -density conditions). For every d, β ą 0 there exist %, α ą 0
and an n0 such that for every p%, d, q-dense hypergraph H on n ě n0 vertices the following holds.

For every ` P t5, 6, 7u and every pair of disjoint ordered β-connectable pairs px, yq, pw, zq P V ˆ V ,
the number of px, yq-pz, wq-paths with ` inner vertices is at least αn`.

Proof of Lemma 7.17.1 (sketch). We begin with the following observation. Let P , P 1 Ď V ˆ V each of
size at least Ωpn2q we show that

there are at least Ωpn5q p-p1-paths with one inner vertex and p P P , p1 P P 1. (7.1)

Note that every p%, d, q-dense hypergraph is p%, d, q-dense and in view of Lemma 3.23.2 applied to P
and V there is a set X Ď V such that |X| “ Ωpnq and for every x P X we have |Npx, P q| “ Ωpn2q.
Similarly, another application of Lemma 3.23.2 to P 1 and X yields a set X 1 Ď X of size Ωpnq such that

|Npx, P q| “ Ωpn2q and |Npx,Qq| “ Ωpn2q

for every x P X 1. Consequently, a standard averaging argument tells us that each of the sets

Q “
 

pp2, xq P V ˆX
1 : |tp1 P V : pp1, p2q P P and p1p2x P Eu| “ Ωpnq

(

and

Q1 “
 

px, p11q P X
1 ˆ V : |tp12 P V : pp11, p12q P P 1 and xp11p12 P Eu| “ Ωpnq

(

has size Ωpn2q. Finally, the -density of H applied to Q and Q1 yields Ωpn5q p-p1-paths starting in
P and ending in P 1 with an inner vertex from X, i.e., it establishes (7.17.1).

For given connectable pairs px, yq and pw, zq letting P and P 1 be their second neighbourhoods as
defined in (5.55.5), yields the conclusion of Lemma 7.17.1 for ` “ 5.

For ` “ 6 we note that -density implies that there are Ωpn2q β1-connectable pairs py, y1q with
xyy1 P E for sufficiently small β1 “ β1pdq ą 0. Applying the same argument as above for every such
pair py, y1q proves the case ` “ 6. Finally, for ` “ 7 the same reasoning applied to the connectable
pairs py1, y2q with xyy1, yy1y2 P E concludes the proof. �

7.2. Absorbing Path Lemma for Theorem 1.41.4. Recall that the proof of Lemma 2.32.3 required
-density bigger than 1{4 in only two places:

(i ) for the connection of the absorbers to a tight path and
(ii ) in Lemma 6.36.3 for addressing the divisibility issue of the size of the absorbable sets,

while for the abundant existence of the absorbers -density d for any d ą 0 is sufficient (see
Lemma 6.26.2). As shown in Section 7.17.1 for the connecting lemma positive -density suffices, which
addresses (i )(i ). Moreover, in Lemma 7.17.1 we are even free to choose the length of the connecting paths,
which renders the divisibility issue from (ii )(ii ) in this context.
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§8. Concluding remarks

We briefly discuss a few open problems for 3-uniform hypergraphs and possible generalisations of
Theorems 1.31.3 and 1.41.4 to k-uniform hypergraphs.

8.1. Problems for 3-uniform hypergraphs. Theorems 1.31.3 and 1.41.4 concern asymptotically opti-
mal assumptions for uniformly dense hypergraphs that guarantee the existence of Hamilton cycles.
The following notation will be useful for the further discussion.

Definition 8.1. Given ‹ P t , , u and a P t1, 2u. We say a pair of reals pd, αq is p‹, aq-Hamilton
if the following assertion holds:

For every ε ą 0 there exist % ą 0 and n0 such that every p%, d`ε, ‹q-dense hypergraph H “ pV,Eq

with |V | “ n ě n0 and δapHq ě pα` εq
`

n
3´a

˘

contains a tight Hamilton cycle.

We remark that we can restrict our attention to tight Hamilton cycles, since the result of Lenz,
Mubayi, and Mycroft [1313] asserts that already p0, 0q would be p‹, aq-Hamilton for loose cycles for
every choice of ‹ P t , , u and a P t1, 2u. For tight Hamilton cycles Aigner-Horev and Levy [22]
showed that p0, 0q is p , aq-Hamilton for a “ 2 and this was extended by Gan and Han [88] and by
Theorem 1.41.4 to a “ 1. It remains to characterise the minimal pairs pd, αq that are p‹, aq-Hamilton
for the four combinations ‹ P t , u and a P t1, 2u.

Example 1.21.2 shows that for pd, αq being p , 1q-Hamilton we must have

maxtd, αu ě 1
4 . (8.1)

On the other hand, Theorem 1.31.3 asserts that for d “ 1{4 already α “ 0 suffices. It would be
interesting to determine the smallest value α ,1 such that d “ 0 suffices. In view of (8.18.1) we have
α ,1 ě 1{4 and the result from [1717] bounds α ,1 by 5{9. Since all known lower bound constructions
for that result are lacking to be -dense it seems plausible that α ,1 ă 5{9.

Similarly, let α ,2 be the infimum over all α ě 0 such that p0, αq is p , 2q-Hamilton. Here it follows
from [2121] that α ,2 ď 1{2. Moreover, Example 1.21.2 yields a hypergraph with minimum codegree
p1{4 ´ op1qqn that fails to contain a tight Hamilton cycle. Therefore, we have α ,2 ě 1{4 and at
this point we are not aware of any reason that excludes the possibility that α ,2 matches this lower
bound.

Problem 8.2. Determine α ,1 and α ,2.

For tight Hamilton cycles in -dense hypergraphs the problem appears to be more delicate as the
following unbalanced version of Example 1.21.2 shows. Instead of a uniformly chosen bipartition of
EpKn´2q we may colour the edges independently red with probability p and blue with probability
1´ p. Let Hp be the resulting hypergraph, where the rest of the construction is carried out in the
same way as in Example 1.21.2. By symmetry we may assume p ě 1{2 and for the same reasons as in
Example 1.21.2 the hypergraph Hp contains no tight Hamilton cycle. Moreover, for every fixed % ą 0
we have with high probability that

δ1pHpq “
`

mint1´ p , p3 ` p1´ pq3u ´ %
˘`

n
2
˘

and δ2pHpq “
`

p1´ pq2 ´ %
˘

n
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and that Hp is p%, p3 ` p1 ´ pq3, q-dense. For p close to 1 this shows that there is no d ă 1 such
that pd, 0q is p , aq-Hamilton for a P t1, 2u. In particular, there is no straightforward analogue of
Theorem 1.31.3 in this setting.

It would be intriguing if this construction is essentially optimal for every p ě 1{2. In such an event
it would imply a resolution of the following problems, where the lower bound would be obtained
from Hp for p “ 2{3 and p “ 1{2.

Problem 8.3. Is it true that:

(i ) p1{3, 1{3q is p , 1q-Hamilton?
(ii ) p1{4, 1{4q is p , 2q-Hamilton?

8.2. Possible generalisations to k-uniform hypergraphs. The notion of tight Hamilton cycles
straight forwardly extends to k-uniform hypergraphs. Moreover, the definition of uniformly dense
hypergraphs is inspired from the theory of quasirandom hypergraphs (see, e.g., [11, 2222] and the
references therein). Below we briefly recall the generalisation of Definition 1.11.1 for general k-uniform
hypergraphs, where we follow the presentation from [2020].

Given a nonnegative integer k, a finite set V , and a set Q Ď rks we write V Q for the set of
all functions from Q to V . It will be convenient to identify the Cartesian power V k with V rks by
regarding any k-tuple áv “ pv1, . . . , vkq as being the function i ÞÝÑ vi. We denote by áv ÞÝÑ áv |Q the
projection from V k to V Q and the preimage of any set GQ Ď V Q is denoted by

KkpGQq “
 

áv P V k : páv |Qq P GQ
(

.

We may think of GQ Ď V Q as a directed hypergraph (where vertices in the directed hyperedges are
also allowed to repeat). More generally, for a subset Q Ď ℘prksq of the power set of rks and a family
G “ tGQ : Q P Qu with GQ Ď V Q for all Q P Q, we define

KkpG q “
č

QPQ
KkpGQq . (8.2)

Moreover, if H “ pV,Eq is a k-uniform hypergraph on V , then eHpG q denotes the cardinality of the
set

EHpG q “
 

pv1, . . . , vkq P KkpG q : tv1, . . . , vku P E
(

.

Now we are ready to state the generalisation of Definition 1.11.1.

Definition 8.4. Let %, d P p0, 1s, let H “ pV,Eq be a k-uniform hypergraph on n vertices, and
let Q Ď ℘prksq be given. We say that H is p%, d,Qq-dense if for every family G “ tGQ : Q P Qu
associating with each Q P Q some GQ Ď V Q we have

eHpG q ě d |KkpG q| ´ %n
k .

It is easy to check that for k “ 3 the following subsets of ℘pr3sq

Q “
 

t1u, t2u, t3u
(

, Q “
 

t1u, t2, 3u
(

, and Q “
 

t1, 2u, t1, 3u
(
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correspond to -, -, and -dense hypergraphs. More precisely, for every ‹ P t , , u we have that
a 3-uniform hypergraph is p%, d, ‹q-dense if and only if it is p%, d,Q‹q-dense.

Example 1.21.2 straight forwardly extends to k-uniform hypergraphs. In fact, we may consider a
random bipartition G ŸG of the pk ´ 1q-element subsets of an pn´ 2q-element set and we define a
k-uniform hypergraph containing only those hyperedges such that all of its pk´1q-element subsets are
in the same partition class. Finally, we may add two vertices x and y such that the pk ´ 1q-uniform
link of x is G and the pk ´ 1q-uniform link of y is G. We remark that for k “ 2 this construction
leads to two disjoint cliques with „ n{2 vertices, which is a lower bound construction for Dirac’s
Theorem [66] in graphs.

It is easy to check that the resulting k-uniform hypergraph H does not contain a tight Hamilton
cycle and for every fixed % ą 0 it is p%, 21´k,Qq-dense for

Q “
 

Q P rkspk´2q : 1 P Q
(

Y
 

t2, . . . , ku
(

with high probability for sufficiently large n. Note that for k “ 3 we have Q “ Q and H provides a
lower bound for Theorem 1.31.3. In fact, it turns out that the hypergraph H is essentially optimal for Q-
dense hypergraphs also for k ą 3, i.e., Q-dense k-uniform n-vertex hypergraphs with density bigger
than 21´k and minimum vertex degree Ωpnk´1q contain a tight Hamilton cycle. This generalisation
of Theorem 1.31.3 will be established in a forthcoming paper.

Moreover, one can check that for

Q1 “
 

t1, . . . , k ´ 1u, t1, . . . , k ´ 2, ku
(

the hypergraph H constructed above is not p%, d,Q1q-dense for any fixed d ą 0 and sufficiently small
% ą 0. Note that for k “ 3 we have Q1 “ Q and, in fact, Theorem 1.41.4 asserts that p%, d,Q1q-dense
hypergraphs with minimum vertex degree Ωpn2q contain a Hamilton cycle for any d ą 0 and
sufficiently small %. We remark that the proof of Theorem 1.41.4 discussed in Section 77 extends to
k-uniform Q1-dense hypergraphs with an appropriate minimum vertex degree condition.

Acknowledgements. We thank the referees for their detailed and helpful remarks.
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