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Abstract

We show that 3-graphs whose codegree is at least (2/3+o(1))n can be decomposed into tight cycles and admit Euler tours, subject
to the trivial necessary divisibility conditions. We also provide a construction showing that our bounds are best possible up to the
o(1) term. All together, our results answer in the negative some recent questions of Glock, Joos, Kühn and Osthus.
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1 Cycle decompositions and Euler tours

1.1 Cycle decompositions

Given a k-uniform hypergraph H, a decomposition of H is a collection of subhypergraphs of H such that
every edge of H is covered exactly once. When these subhypergraphs are all isomorphic copies of a single
hypergraph F we say that it is an F -decomposition. Finding decompositions of hypergraphs is one of the oldest
problems in combinatorics. For instance, the old and well-known problem of the existence of designs and Steiner
systems (solved only recently by Keevash [10] and independently by Glock, Kühn, Lo and Osthus [7]) can be
cast as the problem of decomposing a complete hypergraph into smaller complete hypergraphs of a fixed size.
Thanks to these two breakthroughs, our knowledge on hypergraph decompositions has increased substantially;
but many open questions remain. We refer the reader to the survey of Glock, Kühn and Osthus [8] for an
overview. Here, we focus on decompositions of hypergraphs into cycles, a problem which has connections with
the old problem of finding Euler tours.

From now on, unless stated otherwise, the hypergraphs considered will be 3-uniform. Here we focus on
decompositions of 3-uniform hypergraphs in which the subhypergraphs are all cycles. For ` > 4, the tight cycle
of length ` is the 3-graph C` whose vertices are {v1, v2, . . . , v`} and whose edges are all the triples of the form
{vi, vi+1, vi+2} for 1 6 i 6 ` − 2, together with {v`−1, v`, v1} and {v`, v1, v2}. For brevity, and since no other
kind of hypergraph cycles will be considered, we will refer to tight cycles as cycles.

Given a vertex x in H the degree of x, deg(x), is the number of edges that contain x. Moreover, for a
positive integer k, when the degree of every vertex of a hypergraph H is divisible by k we say that H is k-
vertex-divisible. Note that in a cycle of length ` > 4, every vertex has degree exactly 3. This implies that, for
any ` > 4, any 3-graph H which admits a C`-decomposition for ` > 4 must necessarily be 3-vertex-divisible.
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Another obvious necessary condition to find C`-decompositions in H is that the total number of edges of H is
divisible by `. If H satisfies these two conditions, we say that H is C`-divisible.

However, C`-divisibility is not enough to guarantee the existence of C`-decompositions. For instance, a cycle
C2` is C`-divisible, but clearly does not have a C`-decomposition. Perhaps more worryingly, the computational
problem of deciding the existence of an F -decomposition in a graph G is known to be NP-complete as soon as
a component of F contains more than two edges [5]. Thus, for graphs (let alone hypergraphs), for most F we
do not expect the existence of an “easy” characterisation of the hypergraphs admitting F -decompositions. This
motivates the search of easily-checkable sufficient conditions which, together with the necessary C`-divisibility,
already force the existence of C`-decompositions.

In graphs, one natural such setting is to consider minimum degree conditions. For graphs, the analogous
necessary divisibility conditions to have a C`-decomposition are that every vertex must have even degree and
the total number of edges must be divisible by `, and we say that graphs satisfying both conditions are C`-
divisible. We define δC`

(n) as the minimum d such that every C`-divisible graph G on n vertices which satisfies
δ(G) > d has a C`-decomposition. Barber, Kühn, Lo, and Osthus [2] introduced the technique of iterative
absorption to study F -decompositions in graphs. This technique is also crucial to our present work, and will be
reviewed in more detail in Section 3. In particular, for cycle decompositions in graphs, their work implies that
asymptotic upper bounds for δC`

(n) can be obtained via δ∗C`
(n), which is the minimum degree which guarantees

the existence of ‘fractional C`-decompositions’. More precisely, we now know that δC`
(n) 6 δ∗C`

(n) + o(n).
The famous Nash-Williams conjecture [12] says that δC3(n) 6 3n/4. This is still open, with the current

best upper bound by Delcourt and Postle [4] being δ∗C3
(n) 6 (d+ o(1))n where d ≈ 0.827. Recently, Joos and

Kühn [9] showed that δ∗C`
(n)/n tends to 1/2 whenever ` goes to infinity (they also showed results for cycles in

k-graphs, which play a rôle in our proof as well). In general, for all cycles of odd length ` > 3, the best known
bounds [1,2,9] are

n

2
<

`

2(`− 1)
n 6 δC`

(n) 6 δ∗C`
(n) + o(n) 6

(
1

2
+ C

log `

`

)
n+ o(n).

For cycles of even length, the problem was solved exactly by Taylor [14] when the host graph is large enough.
She showed that δC4(n) = 2n/3 − 1 and δC`

(n) = n/2 for all even ` > 8. In the remaining case C6, the
asymptotic formula δC6(n) = (1/2 + o(1))n is known [1,2].

In hypergraphs, the minimum degree conditions can be generalised in terms of codegree. For k-uniform
graphs and a set S of (k − 1) vertices, we define the codegree of S, deg(S), as the number of edges of H that
contain all of S. We denote the minimum codegree of a hypergraph H over all S by δk−1(H). For a 3-graph H,
δ2(H) is the minimum of deg(x, y) over all pairs {x, y}. We define the C`-decomposition threshold δC`

(n) as the
minimum d such that every C`-divisible hypergraph H on n vertices with δ2(H) > d has a C`-decomposition.

For a general hypergraph F , it is possible to define the analogous F -decomposition threshold δF (n) (to
avoid trivial cases, we are always restricted to host graphs which satisfy the necessary divisibility conditions).
From the work of Glock, Kühn, Lo and Osthus [7], we now know that for each F there exists c > 0 such that
δF (n) 6 (1− c)n, for sufficiently large n.

We investigate δC`
(n) in more detail, for 3-uniform hypergraphs. Our first result gives asymptotically tight

bounds on δC`
(n) for all but finitely many values of `.

Theorem 1.1 Let ` > 9 satisfy one of the following: ` > 107, or ` is divisible by 3. For every ε > 0, and n
sufficiently large, δC`

(n) 6 (2/3 + ε)n.

Say a k-graph has a cycle decomposition if it admits a decomposition into cycles. That is, there are edge-
disjoint cycles —not necessarily of the same length— which cover every edge exactly once. This notion is
weaker than that of having a C`-decomposition for a fixed `. It is easy to see that any 3-graph having a cycle
decomposition must be 3-vertex-divisible. As a corollary of Theorem 1.1, we obtain an upper bound on the
minimum codegree sufficient to force a cycle decomposition.

Corollary 1.2 Any 3-vertex-divisible hypergraph H with δ2(H) > (2/3 + o(1))|H| has a cycle decomposition.

Glock, Kühn, and Osthus [8, Conjecture 5.6] conjectured that in fact δ2(H) > (1/2 + o(1))|H| should
be enough to force a cycle decomposition. However, it turns out that the value ‘2/3’ in Theorem 1.1 and
Corollary 1.2 is best-possible (see Theorem 1.5). We further discuss the optimality of our bounds in Section 1.3.

1.2 Euler tours

Our focus on decompositions into cycles is partly motivated by its close connections with the celebrated problem
of finding Euler tours. Given a k-graph H, a tour is a sequence of non-necessarily distinct vertices v1, . . . , v`
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such that, for every 1 6 i 6 ` the k consecutive vertices {vi, vi+1, . . . , vi+k−1} induce an edge (understanding
the indices modulo `), and moreover all of these edges are distinct. If a hypergraph H contains a tour that
covers each edge exactly once, we call it Euler tour and we say that H is Eulerian.

A primordial result of graph theory was inspired by the problem of finding a route through the bridges of
Königsberg which visits each bridge only once 3. Euler proved that every Eulerian graph must be 2-vertex-
divisible (every vertex has even degree), and stated (later proved by Hierholzer and Wiener) that Eulerian
graphs can be characterised as the graphs which are connected in addition to being 2-vertex-divisible.

Analogously, for k > 3, it is an easy observation that every Eulerian k-graph must be k-vertex-divisible.
However, the characterisation of Eulerian k-graphs is not as simple as for k = 2. For instance, the decision
problem of whether a given 3-graph is Eulerian is NP-hard [11]. In fact, until recently, it was not even known
if complete k-vertex-divisible k-graphs were Eulerian. It was conjectured by Chung, Diaconis, and Graham [3]
that indeed that should be the case, at least for sufficiently large complete k-graphs. This was proven to be true
by Glock, Joos, Kühn, and Osthus [6], which deduced this from a more general result which finds Euler tours
in k-graphs satisfying certain conditions of quasirandomness (of which the complete graphs are a particular
case). From their more general result, the following ‘minimum codegree’ version can be deduced.

Theorem 1.3 There is a constant c > 0 such that any sufficiently large 3-vertex-divisible hypergraph H
with δ2(H) > (1− c)|H| is Eulerian.

The constant c of Theorem 1.3 is fairly small (by inspecting their proof, we estimate c 6 2−10
12

) and therefore
improving the minimum codegree condition becomes a natural problem. Their proof is based fundamentally
on a reduction to the problem of finding a cycle decomposition instead of an Euler tour. In a similar fashion,
we can use Theorem 1.1 to improve the minimum codegree condition and show that 2n/3 is essentially enough.

Corollary 1.4 Any 3-vertex-divisible 3-graph H with δ2(H) > (2/3 + o(1))|H| is Eulerian.

Both in [6, Conjecture 3] and in [8, Conjecture 5.4] it was conjectured that a minimum codegree condi-
tion of (1/2 + o(1))|H| should be enough. However, as it will be presented in the discussion of Section 1.3,
Corollary 1.4 is asymptotically optimal (see Theorem 1.5).

1.3 Lower bounds and counterexamples

Our three main results (namely Theorem 1.1, Corollary 1.2 and Corollary 1.4) hold for 3-graphs H satisfying
δ2(H) > (2/3 + o(1))|H|. It turns out that the ‘2/3’ in those statements cannot be lowered. We prove this by
constructing a family of counterexamples which are able to cover all of the previous settings (C`-decompositions,
cycle decompositions, and Euler tours) in an unified way.

A tour decomposition of H is a collection of edge-disjoint tours in H which, together, cover all edges of H.
Note that a cycle is precisely a tour which does not repeat vertices, thus both C`-decompositions and cycle de-
compositions are particular instances of tour decompositions. An Euler tour is a tour decomposition consisting
of a single tour. Thus the following result shows that all of Theorem 1.1, Corollary 1.2 and Corollary 1.4 are
asymptotically tight.

Theorem 1.5 Let ` > 1 and n > 3(`+ 3) be divisible by 18. Then there exists a C`-divisible 3-graph H on n
vertices which satisfies δ2(H) > (2n− 15)/3, but does not admit a tour decomposition.

We finish with remarks on this example for the case of Euler tours. Recall that, for graphs, being Eulerian is
equivalent to being 2-vertex-divisible and connected. A natural generalization of connectivity for k-graphs with
k > 3, is tight connectivity in k-graphs, which we define now. A walk between edges a, b in a k-graph H is a
sequence of edges e1, . . . , er such that e1 = a, er = b and |ei∩ei+1| = k−1 for each 1 6 i < r. We say a k-graph
H is tightly connected if there is a walk between any pair of edges of H. Observe that a tour yields a walk
between any pair of edges contained in it, so in particular any Eulerian k-graph must be tightly connected.
For k = 3, there exist 3-vertex-divisible 3-graphs H with δ2(H) > (1/2 − o(1))|H| which fail to be tightly
connected and thus Eulerian [8, Example 5.5]. In contrast, it is known that δ2(H) > (1/2 + o(1))|H| is enough
to guarantee tight connectivity, and even the existence of Hamiltonian cycles [13]. Thus our Theorem 1.5 shows
that, in contrast with the graph case, tight connectivity is not the main bottleneck for the existence of Euler
tours. Indeed, there are deeper structural considerations which are present in any tour decomposition (see, e.g.
Lemma 2.5), and we exploit such constraints to build our counterexamples.

3 When the problem was posed, there were seven bridges in Königsberg, but they were severely damaged during WWII. In present
times, the name of the city is Kaliningrad, and only five bridges exist. This new configuration yields a curious partial solution to
the original problem, since now an “Euler walk” which transverses every bridge exactly once is possible. Sadly, there is still no
Euler tour in the city.
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2 Lower bounds

In this section we prove Theorem 1.5. The following 3-graph will be the basis of our construction.

Definition 2.1 Let n be divisible by 18 and write n = 18k. Consider the 3-graph Hn on n vertices, whose
vertex set is partitioned into three clusters V0, V1, V2 whose sizes are n0, n1, n2 respectively, and are defined by

n0 = 6k, n1 = 6k − 2, and n2 = 6k + 2. (1)

Given a vertex x ∈ V (Hn), the label l(x) of x is i if and only if x ∈ Vi. The edge set of Hn is

E(Hn) = {xyz : l(x) + l(y) + l(z) 6≡ 0 mod 3}.

In words, every 3-set is present as an edge in Hn, except for those which are entirely contained in one of
the clusters Vi, or have non-empty intersection with all three clusters. In the remainder of this section, n will
always be clear from context, and for a cleaner notation we will just write H = Hn.

First, it is not difficult to check that the 3-graph H has large minimum codegree.

Lemma 2.2 Let n ∈ 18N. Then δ2(H) > (2n− 12)/3.

Given n and i, j, k ∈ {0, 1, 2}, let Hijk be the edges xyz of H such that (l(x), l(y), l(z)) = (i, j, k). For
instance, H001 are the edges which have two vertices in V0 and one vertex in V1. We note that equations (1)
imply that, for n = 18k, all n0, n1, n2 are even, and for all i ∈ {0, 1, 2} we have ni ≡ i mod 3. Using that,
straightforward calculations will reveal the following congruences modulo 3.

Lemma 2.3 Let n ∈ 18N. Then

(M1) for every x ∈ V (H), degH(x) ≡ 1 mod 3, and
(M2) |H112| 6≡ |H122| mod 3.

Since H is not quite 3-vertex-divisible, our counterexample will consist actually of a slight alteration ob-
tained by removing a perfect matching. We can select such a matching without using edges from H112 ∪H122.

Lemma 2.4 Let n ∈ 18N. Then there exists a perfect matching F ⊆ H \ (H112 ∪H122).

The following lemma is crucial for our analysis. It states that any tour in H must satisfy constrained
intersection sizes with the edges of H112 and H122, even after we allow ourselves to add some extra edges in
V0. For a tour W in H, let W112 and W122 be the edges in W ∩H112 and W ∩H122, respectively.

Lemma 2.5 Let n ∈ 18N. Let S be edge-disjoint with H and V (S) ⊆ V0, and let W be a tour in H ∪S. Then
|W112| ≡ |W122| mod 3.

Proof. Let W = w1w2 · · ·wr, in cyclic order, and let P = σ1 · · ·σr be a cyclic word over the symbols {0, 1, 2},
where σi = l(wi). Since W is a tour, it does not repeat edges. Thus we have that |W112| is exactly the same
as the number of cyclic appearances of the patterns F1 = {112, 121, 211} in P . Similarly, |W122| is exactly
counted by the number of cyclic appearances of F2 = {122, 212, 221} in P .

Define Φ(P ) as follows. Scan the cyclic triples of consecutive symbols of P one by one, and if they belong to
F1∪F2, we add the sum of the values of their symbols to Φ(P ). Formally (using the Iverson bracket notation),

Φ(P ) =
∑

16i6r

Jσiσi+1σi+2 ∈ F1 ∪ F2K(σi + σi+1 + σi+2),

where the indices are always understood modulo r.
We aim to show that Φ(P ) ≡ 0 mod 3. If P consists only of 0s, this is clear. If P consists only of symbols in

{1, 2}, by definition of H there cannot be three consecutive 111 or 222. Thus every pattern of P is in F1 ∪ F2

and therefore Φ(P ) sums every symbol three times, thus Φ(P ) ≡ 0.
Thus we can assume P contains all three symbols {0, 1, 2}. We compute Φ(P ) by scanning the maximal

runs of consecutive symbols of P which only use symbols in {1, 2}. Let R1, R2, . . . , Rk be those runs. By
maximality of the runs, each Ri is surrounded by two 0 symbols, before and after in P . Fix an arbitrary Ri.
If |Ri| < 3 then it does not contribute anything to Φ(P ), so assume |Ri| > 3. Crucially, note that each Ri

cannot begin with two different symbols in {1, 2}. Indeed, otherwise, together with the immediately preceding
0 symbol it would form a triplet of the form 012 or 021, but these do not appear in P . By the same reason,
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Ri cannot end with two different symbols in {1, 2}. If |Ri| = 3 this would imply that Ri is of the form aaa
for some a ∈ {1, 2}, which is not possible. Thus we can assume |Ri| > 4, and by our analysis it must be of
the form aaQibb, where a, b ∈ {1, 2} and Qi is a (possibly empty) word using only symbols in {1, 2}. Then
the contribution of Ri to the sum in Φ(P ) would be that each symbol in Qi is added three times, then a three
times (once because of its first appearance, and twice because of its second appearance), and similarly b is
counted three times. We deduce Φ(P ) ≡ 0 mod 3 always.

On the other hand, note that, for j ∈ {1, 2}, if σiσi+1σi+2 ∈ Fj , then σi + σi+1 + σi+2 ≡ j mod 3. Thus
Φ(P ) ≡ |W112|+ 2|W122| mod 3. Since Φ(P ) ≡ 0 mod 3 we deduce |W112| ≡ |W122| mod 3, as desired. 2

We are now ready to show the proof of Theorem 1.5.

Proof. Consider the 3-graph H = Hn given in Definition 2.1, and F ⊆ H \ (H112∪H122) the perfect matching
given by Lemma 2.4. Let `′ ∈ {4, . . . , `+ 3} be such that e(H − F ) + `′ ≡ 0 mod `. Since n = 18k > 3(`+ 3),
we have |V0| = 6k > `+ 3 > `′. To H − F , we add a cycle C of length `′, edge-disjoint from H − F , which is
entirely contained in V0. We claim H ′ = H − F + C has all of the desired properties.

We first check H ′ is C`-divisible. We start by checking H ′ is 3-vertex-divisible. Indeed, let x ∈ V (H ′) be
arbitrary. We have degH(x) ≡ 1 mod 3 by Lemma 2.3(M1), we have degF (x) = 1 since F is a perfect matching,
and degC(x) ≡ 0 mod 3 since C is a cycle on `′ > 4 vertices. Thus degH′(x) ≡ 1 − 1 + 0 ≡ 0 mod 3 for all
x ∈ V (H ′), as required. Also, the number of edges of H ′ is e(H ′) = e(H − F ) + `′, which was precisely chosen
to be divisible by `, so indeed H ′ is C`-divisible.

Now we check H ′ has large codegree. It suffices to show H − F has large codegree. Removing a perfect
matching from H decreases the codegree of every pair at most by 1, therefore by Lemma 2.2, we have δ2(H −
F ) > δ2(H)− 1 > (2n− 12)/3− 1 = (2n− 15)/3.

Now we prove H ′ does not have a tour decomposition. First notice that, since F ⊆ H \ (H112 ∪ H122),
the 3-graph H ′ still has every edge of H112 and H122. For a contradiction, suppose that W 1, . . . ,W r are
tours forming a decomposition in H ′. Since the tours are edge-disjoint and cover all edges of H ′, we have∑

16i6r |W i
112| = |H112| and

∑
16i6r |W i

122| = |H122|. By Lemma 2.5 (with C playing the rôle of S), we have
|W i

112| ≡ |W i
122| mod 3 holds for each 1 6 i 6 r. We deduce |H112| ≡ |H122| mod 3, but this contradicts

Lemma 2.3(M2). 2

3 Sketch of proof of Theorem 1.1

3.1 Iterative absorption: a summary

Our proof uses the technique of iterative absorption introduced by Barber, Kühn, Lo and Osthus [2]. This
method has been used in several decomposition problems for graphs and hypergraphs. We summarise the main
steps tailored for our application of finding C`-decompositions, for a complete and gentle exposition we refer
the reader to the expository article by Barber, Glock, Kühn, Lo, Montgomery and Osthus [1].

Let H = (V,E) be a hypergraph on n vertices and with δ2(H) > (2/3 + ε)n. At the beginning of the proof
we will define a family of nested subsets of vertices V (H) = V0 ⊇ V1 ⊇ V2 ⊇ · · · ⊇ Vl each of which keeps the
minimum codegree condition (relative to their size). Moreover, these sets linearly decrease their size. Such a
family will be called a “vortex”. It it easy to see that such a family exists by a random argument. In fact,
we can find a vortex such that the size of Vl is bounded by some constant m, which does not depend on n.
Afterwards, we remove a small subgraph A called the “absorber”. The absorber will have the following crucial
property: it will be edge-disjoint from H[Vl], and for any C`-divisible R ⊆ H[Vl], both A and A ∪ R admit a
C`-decomposition. We will describe the construction of A more precisely later. Since the absorber is small, its
removal will mildly affect the degree properties overall. Thus we concentrate on finding edge-disjoint copies of
C` in H ′ = H −A.

Now, the strategy to find a full C`-decomposition in H ′ goes step by step along the sets of the vortex,
through the so called Cover-Down Lemma. We use it to cover the edges of the larger sets of the vortex and
keep the remainder always inside the following smaller subsets. More precisely, for 0 6 i < l, in the i-th step
we have already covered all edges in V (H ′) with edge-disjoint copies of C`, except for some which are located
inside H ′[Vi]. To go to the next step we need to cover all edges in H ′[Vi] \H ′[Vi+1]. For this, we first greedily
find an almost C`-decomposition of H ′[Vi] \H ′[Vi+1] and then, using the minimum degree conditions, we cover
all possible remaining edges which are not fully included in Vi+1. We need to execute these steps while also
preserving the minimum codegree conditions of the leftover hypergraph inside the next set of the vortex. The
Cover-Down Lemma can be proven along the same lines as similar lemmatas appearing e.g. in [1,2]. We remark
that in this part, and only for ` > 107 not divisible by 3, we make use of recent results by Joos and Kühn [9]
on fractional cycle decompositions.

After l steps, we have found edge-disjoint copies of C` in H ′, such that all the non-covered edges lie inside Vl.
Note that the set of uncovered edges R ⊆ H[Vl] must necessarily form a C`-divisible subgraph. At this point
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we will use the properties of the absorber A, to get that R ∪ A has a cycle decomposition. This gives the
C`-decomposition of H, as desired.

To construct A, we will construct a different absorber for each possible C`-remainder, according to the
following definition.

Definition 3.1 Given a positive integer `, a hypergraph H, and a subgraph R ⊆ H, we say that a subhyper-
graph A ⊆ H edge-disjoint with H[V (R)] is an absorber for R if both A and A ∪R admit C`-decompositions.

As mentioned before, the set Vl has size at most m, independent of n. Thus, the number of possible leftover
hypergraphs R1, R2, . . . , Rt in H[Vl] is also bounded by a function of m, and thus tiny in comparison with n.
If, for each 1 6 i 6 t there exists Ai ⊆ H which is an absorber for Ri, all Ai are edge-disjoint and each Ai has
no edges in H[Vl], then the subgraph A =

⋃
i∈[t]Ai is an absorber suitable for our needs. Hence, the following

lemma is enough to finish the proof of Theorem 1.2.

Lemma 3.2 Let ε > 0, ` and m positive integers with ` > 4, and n be sufficiently large. Let H be a hypergraph
on n vertices with δ2(H) > (2/3 + ε)n. For any C`-divisible subhypergraph R ⊆ H on at most m vertices there
exists an absorber for R on at most 40m5` vertices.

Most of the work is devoted into the proof of Lemma 3.2, which we explain in more detail below.

3.2 Constructing the absorber: tours and trails

Now we describe in more detail our strategy to find absorbers. Consider a C`-divisible R ⊆ H for which we
want to build an absorber. We are halfway done if R happens to admit a tour-decomposition (which, recall,
is an edge-disjoint collection of tours which use all the edges of R). Whenever R has this shape, it is possible
to find a ‘transformer’ between R and an edge-disjoint collection of C`. More precisely, we will find in H, an
edge-disjoint collection R′ of copies of C` and a subgraph T , such that R,R′, T are edge-disjoint, and both R∪T
and R′ ∪ T have a C`-decomposition. In that case, then R′ ∪ T will be an absorber for R. This construction
can be done by adapting the arguments used in the construction of ‘absorbers for long cycles’ done by Taylor
in the graph case [14, Section 5.1]. Hence, our main goal is to ‘transform’ an arbitrary leftover hypergraph R
into a collection of edge-disjoint tours.

For ` > 3, define a trail as a sequence of vertices u1u2 · · ·uk, possibly with repetitions, such that all the
edges {ui, ui+1, ui+2} for i ∈ {1, 2, . . . , k − 2} are present and all of them are different. Moreover, given a
trail P = u1u2 · · ·uk−1uk we say that the ordered pairs (u2, u1) and (uk−1, uk) are the ends of P . Observe
that due the order in which we take these pairs, this definition is independent of the order in which we take
the trail.

Given a R ⊆ H, suppose it contains a collection of edge-disjoint trails and tours P1, P2, . . . , Pk

and C1, C2, . . . , Ct which covers all edges of R exactly once. We call such a collection a tour-trail decom-
position of R. Since we aim for tour decompositions of R, we would like to find such decompositions where
the number of trails is as small as possible, in the following we describe how to modify such decompositions in
order to achieve this goal.

Given a tour-trail decomposition T of R, we define its residual digraph D(T ) as the (multi)digraph whose
arrows correspond to the ends of the trails in T , taken with multiplicities. Crucially, if some residual digraph
D(T ) contains both arrows (u, v) and (v, u), then it means that we can ‘connect’ the trails associated with each
arrow. By doing this, we will either replace two trails by a single trail, or replace a trail by a tour. In any case,
we obtain a tour-trail decomposition of R in which the number of trails has decreased, which leaves us closer to
our goal. Our general idea is to start from a leftover R by selecting a tour-trail T , and based on the structure
of D(T ), replace R by R′, in such a way that R′ admits a tour-trail decomposition T ′ such that D(T ′) is
‘simpler’ than D(T ) (we explain this replacement in more detail below). Iterating this, we will get simpler and
simpler residual digraphs. Ultimately we will arrive at a leftover R′′, with a tour-trail decomposition T ′′ whose
residual digraph D(T ′′) is empty: this means that T ′′ is actually a tour decomposition, and we can finish as
discussed before.

As an intermediate step towards the mentioned plan, the following lemma states that, for an arbitrary
leftover, we can replace it with another which contains a very particular kind of tour-trail decomposition.

Lemma 3.3 Let ε > 0, ` and m positive integers with ` > 7, and n be sufficiently large. Let H be a 3-vertex-
divisible on n vertices 3-graph with δ2(H) > (2/3 + ε)n. Let R ⊆ H be C`-divisible on at most m vertices.
Then there exists T ⊆ H, edge-disjoint with R, on at most 20m5` vertices such that

(i) T admits a C`-decomposition,
(ii) T ∪ R admits a tour-trail decomposition T whose residual digraph D(T ) is a vertex-disjoint union of

directed triangles.
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We construct T in Lemma 3.3 as follows. Initially, find an arbitrary tour-trail decomposition of R0 = R
(some must exist, since single edges can form a trail consisting of a single edge). We will find R0 ⊆ R1 ⊆ · · · ⊆
Ri, each having a tour-trail decomposition Ti. We will obtain Ri+1 from Ri by adding a gadget Gi to Ri. Such
a gadget will consist of a small (at most 20` vertices) C`-decomposable graph, edge-disjoint with Ri. The point
is to identify a small ‘repairable structure’ in D(Ti), and the gadget Gi allows us to obtain a new tour-trail
decomposition Ti+1 in Ri+1 = Ri ∪ Gi where this repairable structure is no longer present in D(Ti+1). After
a bounded number q 6 m5 of steps we will arrive at Rq with a tour-trail decomposition Tq, where D(Tq) has
no repairable structures. In our case this will imply that Tq has the desired shape (vertex-disjoint union of
directed triangles) and the lemma is proven by taking T = G1 ∪ · · · ∪Gq.

Now we describe our gadgets with more detail. We will use large codegree of H to construct the gadgets.
The basic observation is the following: given t > 5 and ε > 0, then for n large enough, two pairs (a, b), (c, d)
of distinct vertices in V (H), and a small set of vertices |U | 6 εn/2 to avoid, using the minimum codegree
δ2(H) > (2/3 + ε)n we can greedily find a path P = v1v2 · · · vt−1vt, where (v1, v2, vt−1, vt) = (a, b, c, d) and
no vertex of {v3, . . . , vt−2} is in U . Using this observation repeatedly we can connect pairs to form cycles of
controlled length, which then we can decompose into tour-trail decompositions to obtain useful gadgets.

An example of a ‘basic gadget’ (which will form the basis of more complicated gadgets in our proof) is
the following, which we call a four-cycle gadget. Suppose R is a given k-graph, and uvw, vwx are two edges
not in R. By using the previous observation, we can find an `-cycle C, edge-disjoint from R and containing
uvwx as a subpath. Now form a tour-trail decomposition of C by considering the trails T1 = uwvx and
T2 = C \ {uvw, vwx} and no tours. It turns out that the residual digraph of this tour-trail decomposition of C
is precisely the directed 4-cycle uvxw. A similar gadget (with the same residual digraph) can be constructed
if the initial two edges are uwx and uvx instead.

As an example of more complicated gadget operations, we will sketch how to use four-cycle gadgets to
join trails given by two disjoint directed triangles of a residual digraph. Since disjoint directed triangles in a
residual digraph are precisely the output of Lemma 3.3, this will be enough to finish our proof. We remark
that the next construction is actually the first place where the full strength of the minimum codegree of at
least (2/3 + ε)n is used, in the previous steps a bound of (1/2 + ε)n would have sufficed.

Say C1 = u1v1w1 and C2 = u2v2w2 are the edges of two directed triangles in the residual digraph of an
tour-trail decomposition of R ⊆ H. We wish to find a C`-divisible T ⊆ V (H), edge-disjoint with R, such that
T admits a tour-trail decomposition whose residual digraph is precisely formed by the two directed triangles
w1v1u1 and w2v2u1, as they correspond exactly to the opposite directions of C1, C2 then they ‘cancel out’ by
joining trails, as described before.

u1v1

w1

u2

v2

w2

(a) Setting virtual triangles.

u1v1

w1

u2

v2

w2

(b) New common neighbours.

u1v1

w1

u2

v2

w2

(c) Locating cycle gadgets.

Fig. 1. Using δ2(H) > (2/3 + ε)n and four-cycle gadgets to eliminate two directed triangles from a residual digraph.

To find such T , we follow a geometric intuition. Picture C1, C2 as the opposite faces in a triangular prism,
where the three square faces are given by v1u1v2u2, w1w2u2u1 and w2w1v1u2. Now decompose each one of the
square faces of the prism into two ‘virtual’ triangles, we say these triangles are ‘virtual’ because they need not
be edges of H. For instance these two triangles in v1u1v2u2 can be v1u1v2 and v2u1u2. In the end we obtain a
total of six ‘virtual’ triangles (see Figure 1a). To be able to use four-cycle gadgets we need to find edges in place
of the virtual edges, which is done as follows. Using the minimum codegree at least (2/3 + ε)n, we can find, for
each of the virtual triangles, a common neighbour of its three pairs. For instance, in the virtual triangle u1v1v2
we find a vertex x which is a common neighbour of the three pairs u1v1, v1v2 and u1v2 (see Figure 1b). In the
new structure there are plenty of pairs of edges which intersect in two vertices, and thus suitable to construct
four-cycle gadgets using them. By orienting the cycles on those four-cycle gadgets coherently we can get the
desired residual digraph (see Figure 1c, where the selected four-cycles are marked in red).
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4 Concluding remarks

Let `0 be the smallest integer such that δC`
(n) = (2/3 + o(1))n for all ` > `0. Our main result shows `0 < 107,

and we can give constructions which show that `0 > 4. It would be interesting to close this gap.
A natural question is what happens for k-graphs with k > 4. Our proofs and constructions rely on using

edges of size 3, and it is not clear to us if Theorem 1.5 indicates the emergence of a pattern where the necessary
codegree to ensure cycle decompositions and Euler tours on n-vertex k-graphs is way larger than (1/2+o(1))n.
Question 4.1 For k > 4, let H be a k-graph on n vertices. Is δk−1(H) > ((k− 1)/k+ o(1))n a sufficient and
asymptotically optimal condition for the existence of cycle decompositions or Euler tours?

Finally, our proof method naturally suggests a randomised algorithm which outputs an Euler tour in input
3-graphs satisfying δ2(H) > (2/3+ε)n, and runs in expected polynomial time (for fixed ε). We believe standard
derandomisation techniques can be applied to transform it into a deterministic polynomial-time algorithm.
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