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Preamble and notation

In this part of the course we will study extremal-type questions for subsets of a
given finite set.

We will use the same standard notation introduced in the previous parts of
the the course. Namely, given n P N, we denote the set of the first n natural
numbers t1, 2, . . . , nu by rns. Further, for a ă b ď n the ‘interval’

tx : a ď x ď bu “ ta, a ` 1, . . . , bu Ď rns

will be denoted by ra, bs. For a set X Ď rns, the set of all subsetes of X is denoted
by 2X and for k ď n we write

`

X
k

˘

to refer to the set of all subsets of X of size k.
Sometimes we will bring notation from hypergraph theory. In particular, given

a family of sets F Ď 2X , we sometimes call the elements of X vertices and we refer
to a set F P F as an edge of F . Moreover, for simplicity, we sometimes we omit
parenthesis and commas coming from set theoretic notation. For instance, instead
of ta, b, cu we will simply write abc.

The following will be a very useful formula for the binomial coefficient
ˆ

n

k

˙

“

ˆ

n ´ 1
k

˙

`

ˆ

n ´ 1
k ´ 1

˙

.

In Section 1 we introduce the classical Erdős-Ko-Rado Theorem for intersecting
families. We will study generalisations and variations of this basic result. Then in
Section 2 we will study an elegant proof technique introduced by Katona in the
70s. As we will see, this technique can be applied to prove several classical results
in extremal set theory, as well as some not-so-classical results. We end these notes
with Section 3, in which we study extremal results for the so-called shadow of a
family of subsets.

§1. Intersecting problems

Definition 1.1. We say that a family of subsets F is intersecting if for every two
sets A, B P F we have A X B ‰ ∅.

Similarly, we say that two families F and H are cross-intersecting if for every
two sets A P F and B P H we have A X B ‰ ∅.

The following are examples of intersecting families.

Example 1.2. Let B P 2rns be the family of sets of size at least tn
2 u ` 1. This is

B :“
!

X P 2rns : |X| ě

Yn

2

]

` 1
)

Ď 2rns .

Observe that for every two sets X, Y P B we have |X| ` |Y | ě n ` 1, and
therefore, X X Y ‰ ∅.
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Example 1.3. Let F p1q P 2rns be the family of all sets containing the element 1,
i.e. F :“ tF P 2rns : 1 P F u. Obviously, 1 P F1 X F2 for every F1, F2 P F , and
hence F p1q is intersecting.
Example 1.4. Let n be even and let A “ tX P 2rns : |X| “ n{2 and 1 P Xu.
Let B be the family from Example 1.2 and observe that

F :“ A Y B

is intersecting.
The following is a very natural question, and is one of the starting points of

Extremal Set Theory.
Question 1.5. Given n P N, what is the largest possible intersecting family on n

vertices?
The answer is easy to obtain.

Theorem 1.6. Let F Ď 2rns be an intersecting family. Then, |F | ď 2n´1.

Proof. Let F “ tF c : F P Fu. It is easy to see that |F | “ |F |. Moreover, since F
is intersecting, for each set A P 2rns either A or Ac is in F , but not both. In other
words,

F X F “ ∅ .

Hence 2|F | “ |F | ` |F | “ |F Y F | ď 2n. □

Remark 1.7. Observe that due to the family Fp1q from Example 1.3, Theorem 1.6
is best possible.

We can go a bit further and deduce the following surprisingly powerful result.
Theorem 1.6 (reprise). Let F Ď 2rns be an intersecting family. Then, there is an
intersecting family F 1 Ě F with |F 1| ď 2n´1.

The same problem, becomes substantially more difficult when we ask for the
maximum possible size of an intersecting family F Ď

`

rns

k

˘

for a given k ě 2. This
problem was solved by Erdős, Ko, and Rado in 19381 and is one of the most
influential results in extremal set theory.
Theorem 1.8. (Erdős-Ko-Rado Theorem [2]) Let n ě 2k. If F Ď

`

rns

k

˘

is an
intersecting family, then, |F | ď

`

n´1
k´1

˘

.

In order to prove Theorem 1.8, Erdős, Ko, and Rado introduced a set operation
that we will define in the next subsection.

For 2k ě n ` 1 the problem is trivial, since every two k-sets intersect. In other
words, the family F “

`

rns

k

˘

is itself intersecting and obviously of maximal size.
If Fp1q is the family given in Example 1.3, then the family Fkp1q :“ Fp1q X

`

rns

k

˘

shows that Theorem 1.8 is best possible.
1For many geopolitical reasons (among other issues), it was only publish in 1961
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1.1. Shifting for Erdős-Ko-Rado. The following operation is the basis for the
proof of Theorem 1.8 (and for many other proofs!).

Definition 1.9. Given a family of sets F Ď 2rns and two numbers i, j P rns we
define the pi, jq-shift of a set F P 2rns by

σF
i,jpF q :“

#

pF ∖ jq Y i if i R F, j P F, and pF ∖ jq Y i R F
F otherwise .

When F is clear form the context, we will omit it from the notation. Moreover,
we define the pi, jq-shift of F by

σi,jpFq “ tσF
i,jpF q : F P Fu .

Roughly speaking, given F Ď 2rns, the operation σi,jp¨q replaces the ver-
tex j with i, whenever it is possible (i.e. when j is present and i is not) and
whenever it creates a new set in the family F . For example, for the fam-
ily F “ t123, 234, 345, 456, 156u Ď

`

r6s

3

˘

we have

σ2,5pFq “ tσ2,5p123q, σ2,5p234q, σ2,5p345q, σ2,5p456q, σ2,5p156qu

“ t 123, 234, 345, 246, 126 u .

Observe that F , σ2,5pFq Ď
`

r6s

3

˘

and that |F | “ |σ2,5pFq|. Furthermore, both F
and σ25pFq are intersecting. In fact, these properties are always preserved.

Proposition 1.10. Let F Ď 2rns and i, j P rns, then
(a ) |F | “ |σi,jpFq|,
(b ) for every F P F , we have |F | “ |σi,jpF q|, and
(c ) if F is intersecting, then σi,jpFq is intersecting as well.

Proof. Since (a ) and (b ) are easy to prove we focus only on (c ).
Suppose F is intersecting. Given A, B P F we shall prove

σi,jpAq X σi,jpBq ‰ ∅ .

First, if σi,jpAq “ A and σi,jpBq “ B, then σi,jpAq Xσi,jpBq “ AXB ‰ ∅, since F
is intersecting. Second, if σi,jpAq ‰ A and σi,jpBq ‰ B, then σi,jpAq “ pA ∖ jq Y i

and σi,jpBq “ pB ∖ jq Y i. Hence, i P σi,jpAq X σi,jpBq ‰ ∅. Thus, without loss of
generality, we may assume σi,jpAq “ A and σi,jpBq “ pB ∖ jq Y i.

If i P A, then i P σi,jpAq X σi,jpBq ‰ ∅, and we would be done. Thus, we may
assume the opposite and conclude

i R A and i R B . (1.1)

Note that σi,jpAq X σi,jpBq “ A X
`

pB ∖ jq Y i
˘

Ě A X B ∖ j. Hence, if A X B ‰ j,
then σi,jpAq X σi,jpBq ‰ ∅ and we would be done. Hence, we may assume

A X B “ j , (1.2)
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and in particular, j P A. That, together with (1.1) and the fact that σi,jpAq “ A

yield pA ∖ jq Y i P F . But then, the fact that
`

pA ∖ jq Y i
˘

X B Ď A X B ∖ j
(1.2)
“ ∅ .

is a contradiction, since F is intersecting. □

The following definition is crucial for the proof of Theorem 1.8.

Definition 1.11. A family F Ď 2rns is called shifted if for every 1 ď i ă j ď n we
have σi,jpFq “ F .

Observe that for a family to be shifted it is require that σi,jpFq “ F only
for i ă j (not for every pair i, j).

It is not hard to see that after finitely many iterative applications of the shifting
we will end up with a shifted family. In particular, we have the following lemma.

Lemma 1.12. Given an intersecting family F Ď 2rns there is a family F‹ Ď 2rns

such that
(i ) F‹ is shifted,

(ii ) F‹ is intersecting,
(iii ) |F | “ |F‹|, and
(iv ) for k P rns, we have |F X

`

rns

k

˘

| “ |F‹ X
`

rns

k

˘

|; in particular, if F Ď
`

rns

k

˘

then F‹ Ď
`

rns

k

˘

.

Proof. We first prove that after finitely many shifting operations applied consecu-
tively to F we obtained a shifted family (i.e. satisfying (i )).

For a set A P 2rns define the parameter φpAq :“
ř

aPA a and for F define

φpFq :“
ÿ

APF
φpAq “

ÿ

APF

ÿ

aPA

a .

Observe that φpFq “ 0 if and only if F “ ∅ or F “ t∅u. Thus, since F is
intersecting we have φpFq ą 0.

If F is already shifted then there is nothing to prove. Suppose F is not shifted,
meaning there are 1 ď i ă j ď n such that σi,jpFq ‰ F . For at least one set A P F
we have σi,jpAq “ pA ∖ jq Y i. Moreover, φpσi,jpAqq “ φpAq ´ j ` i ă φpAq.
Summing over the whole family F , we obtain

0 ă φpσi,jpFqq ă φpFq ,

where the first inequality follows from the fact that σi,jpFq is non-empty.
By the reasoning above, for a non shifted family, the value of φp¨q reduces by at

least one after applying the shifting operation. Hence, after at most φpFq iterative
applications of shifting we must obtain a shifted family F‹, i.e. satisfying (i ).

Finally, observe that due to Proposition 1.10 shifting preserves the size of the
sets F P F , the size of F itself, and the property of being intersecting, therefore
(ii )-(iv ) are preserved under the any number of consecutive shifting operations. □
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Now we prove Theorem 1.8.

Proof of Theorem 1.8. We proceed by induction on k ` n. If k “ 1 the statement
is obvious for every n ě 2. For n “ 2k and k ě 1, observe that

ˆ

n

k

˙

“ 2
ˆ

n ´ 1
k ´ 1

˙

,

and therefore we may proceed as in the proof of Theorem 1.6. That is, as F is
intersecting, we have F XF “ ∅. Thus, 2|F | “ |F |`|F | ď |F YF | ď

`

n
k

˘

“ 2
`

n´1
k´1

˘

as desired.
Now, fix k ą 1 and n ą 2k and suppose by induction that the statement of

the theorem holds for every pair n1, k1 with n1 ` k1 ă n ` k. Let F Ď
`

rns

k

˘

be
an intersecting family and apply Lemma 1.12 to obtain an shifted family F‹

satisfying (ii )-(iv ). In particular, we have |F | “ |F‹| and F‹ Ď
`

rns

k

˘

.
Consider the families

F‹
pnq “

"

F ∖ n P

ˆ

rn ´ 1s

k ´ 1

˙

: F P F‹ and n P F

*

and

F‹
pnq “

"

F P

ˆ

rn ´ 1s

k

˙

: F P F‹ and n R F

*

,

and observe that |F‹| “ |F‹pnq| ` |F‹pnq|.
Note that F‹pnq Ď F‹, and therefore, F‹pnq is intersecting. We shall prove

that F‹pnq is intersecting as well. Indeed, let A, B P F‹pnq and suppose for a
contradiction that A X B “ ∅. As |A| ` |B| “ 2k ´ 2 ă n ´ 2 there must be
an i P rn ´ 1s such that i R A Y B. Since A Y n P F‹ and F‹ is shifted, we
have A Y i P F . However, this yields

pA Y iq X pB Y nq “ ∅ ,

which is a contradiction as A Y i, B Y n P F‹ and F‹ is intersecting. We conclude
that F‹pnq is intersecting.

Applying the induction hypothesis to both F‹pnq Ď
`

rn´1s

k

˘

and F‹pnq Ď
`

rn´1s

k´1

˘

we obtain

|F‹
| “ |F‹

pnq| ` |F‹
pnq| ď

ˆ

pn ´ 1q ´ 1
k ´ 1

˙

`

ˆ

pn ´ 1q ´ 1
pk ´ 1q ´ 1

˙

“

ˆ

n ´ 1
k ´ 1

˙

,

as desired. □

1.2. Larger intersections.

Definition 1.13. Given t ě 1, we say that a family of subsets F Ď 2rns is t-
intersecting if for every two sets A, B P F we have

|A X B| ě t .

Obviously F is 1-intersecting if and only if it is intersecting. The following
lemma can be proven along the lines of Proposition 1.10.
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Lemma 1.14. Given i, j P rns, if F is t-intersecting then σi,jpFq is also t-
intersecting. □

The original paper by Erdős, Ko, and Rado [2] contained the following result is
proved as well.

Theorem 1.15. Let n, k, t P N with
`

k
t

˘3
ď n´t

k´t
. If F Ď

`

rns

k

˘

is a t-intersecting
family. Then

|F | ď

ˆ

n ´ t

k ´ t

˙

.

Proof. Let F be a t-intersecting family of maximal size. Because of Lemma(s) 1.14
(and 1.12) we may assume that F is shifted.

First we prove that there are two sets A, B P F with |A X B| “ t. Indeed,
suppose that for every two sets in F the intersection is of size at least t ` 1.
Since F is shifted, we have that rks P F . Observe that for every set F P F
we have |r2, k ` 1s X F | ě |r1, ks X F | ´ 1 ě pt ` 1q ´ 1 “ t (recall that ra, bs

denotes the set of all integers between a and b). Therefore, since F is maximal, the
set r2, k ` 1s P F . In general, given an interval ra, a ` k ´ 1s P F for every F P F
we have

|F X ra ` 1, a ` ks| ě |F X ra, bs| ´ 1 ě pt ` 1q ´ 1 “ t ,

and therefore ra ` 1, b ` 1s P F by maximally. Hence, rks, rk ` 1, 2ks P F , however,
this is a contradiction, as rks X rk ` 1, 2ks “ ∅.

Now we take A, B P F with |AXB| “ t. If for every set C P F we have AXB Ď C,
then F Ď tF P

`

rns

k

˘

: A X B Ď F u which is of size at most
`

n´t
k´t

˘

and we would
be done. Thus, we may assume there is a set C Ď F for which A X B Ę C. In
particular, since F is t-intersecting we have

|A X B| “ t, |A X C|, |B X C| ě t, and |A X B X C| ă t. (1.3)

Roughly speaking, we want to bound the number of sets in F by counting
the numbers of sets in F that intersect in A, B, and C exactly in three given
sets X P

`

A
t

˘

, Y P
`

B
t

˘

, and Z P
`

C
t

˘

respectively. Then, we sum over all possible
sets X, Y, Z.

For every set D P F ∖ tA, B, Cu define DA :“ D X A, DB :“ D X B, and DC :“
D X C and note that, since F is t-intersecting, we have |DA|, |DB|, |DC | ě t.
Moreover, note that

|DA Y DB Y DC | ą t , (1.4)

otherwise, if DA YDB YDC “ t, then we would have DA “ DB “ DC Ď AXB XC

which contradicts (1.3).
Now, for any three sets X P

`

A
t

˘

, Y P
`

B
t

˘

, and Z P
`

C
t

˘

define the function

fpX, Y, Zq :“ |tD P F : DA Ě X, DB Ě Y, and DC Ě Zu| ,
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and set ℓ :“ |X Y Y Y Z|. Because of (1.4) we may assume ℓ ě t ` 1. Hence, we
have

fpX, Y, Zq ď

ˆ

n ´ ℓ

k ´ ℓ

˙

“

ˆ

n ´ ℓ

n ´ k

˙

ď

ˆ

n ´ pt ` 1q

n ´ k

˙

“

ˆ

n ´ t ´ 1
k ´ t ´ 1

˙

.

Finally, we finish the proof by observing that

|F | ď
ÿ

XPpA
t q

ÿ

Y PpB
t q

ÿ

ZPpC
t q

fpX, Y, Zq

ď

ˆ

k

t

˙3ˆ
n ´ t ´ 1
k ´ t ´ 1

˙

ď
n ´ t

k ´ t

ˆ

n ´ t ´ 1
k ´ t ´ 1

˙

“

ˆ

n ´ t

k ´ t

˙

,

where the last inequality follows from the bound
`

k
t

˘3
ď n´t

k´t
in the statement of

the theorem. □

Understanding the behaviour of maximal t-intersecting families when the in-
equality

`

k
t

˘3
ě n´t

k´t
does not hold turned out to be a very hard problem. It was

only solved by Aswelde and Kachatrian [1] in 1999, more than 60 years after Erdős,
Ko, and Rado’s result proven.

1.3. Non-trivial Families.

Definition 1.16. A family F Ď 2rns is called trivial if
Ş

F PF F ‰ ∅.

In other words, F is trivial if there is an element x P rns which is contained
in every edge. Erdős-Ko-Rado Theorem states that trivial families attained the
maximum possible size of a k-uniform intersecting family. A natural question is to
study what is the maximum possible size when we restrict ourselves to non-trivial
families.

The following family is intersecting and non-trivial.

Example 1.17. Take H Ď
`

rns

k

˘

defined as

H “ tr2, k ` 1su Y

"

F P

ˆ

rns

k

˙

: 1 P F and F X r2, k ` 1s ‰ ∅
*

Hilton and Milner [6] proved that Example 1.17 is indeed extremal.

Theorem 1.18. (Hilton-Milner Theorem [6]) Let k ě 2 and n ě 2k. If F Ď
`

rns

k

˘

is a non-trivial intersecting family, then

|F | ď

ˆ

n ´ 1
k ´ 1

˙

´

ˆ

n ´ k ´ 1
k ´ 1

˙

` 1
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The original proof of Theorem 1.18 was hard and long. The following proof
introduced by Frankl [4] is more fundamental (but still not so short). To make a
clearer presentation, we will divide the proof in two lemmas. The first one reduces
the problem to the case in which F is shifted.

Lemma 1.19. Let k ě 2 and n ě 2k. If F Ď
`

rns

k

˘

is a maximal non-trivial
intersecting family, then there is a shifted non-trivial intersecting family F‹

with |F‹| “ |F |.

Proof of Lemma 1.19. Let F be a maximal non-trivial intersecting family. Due to
Proposition 1.10 the shifting operation does not change the size of the family nor
the fact that it is intersecting. Thus, if after applying shifting for every i ă j ď n

the resulting family is still non-trivial, then we are done.
Hence we may assume there are i ă j ď n such that F is non-trivial but σi,jpFq

is trivial. Without loss of generality, we may rename the vertices and assume
that i “ 1 and j “ 2. Since σ1,2pFq is trivial but F is not, it is not hard to
see that for every set A P σ1,2pFq we have 1 P A. Moreover, for every A P F we
have A X t1, 2u ‰ ∅. Thus, since F is maximal, it holds that

H12 “

"

B P

ˆ

rns

k

˙

: 1, 2 P B

*

Ď F . (1.5)

Observe that for every 3 ď i ă j ď n we have σi,jpH12q “ H12. Therefore, for
every 3 ď i ă j ď n the family σi,jpFq is non-trivial. Indeed, the only way in
which σi,jpFq could be trivial wold be if i P

Ş

APσi,jpFq
A. However, that cannot

happen since H12 Ď σi,jpFq and there is a set B R H12 with i ‰ B. Hence, we may
apply shifting to F for all 3 ď i ă j ď n and the family will still be non-trivial
(intersecting, and of the same size). Denote the resulting family by F 1.

Using the shifting and the fact that F 1 is non-trivial, it is easy to see that
both rk ` 1s ∖ 1, rk ` 1s ∖ 2 P F 1. In fact, as H12 Ď F 1, we have

`

rk`1s

k

˘

Ď F 1.
Finally, for every 1 ď i ď j ď n we have that σi,j

´

`

rk`1s

k

˘

¯

“
`

rk`1s

k

˘

and hence
`

rk`1s

k

˘

Ď σi,jpF 1q. In particular, as
`

rk`1s

k

˘

is non-trivial, σi,jpF 1q is non-trivial.
We obtain the desire F‹ after applying shifting for every 1 ď i ă j ď n. □

In the second lemma deal with the case in which F is shifted.

Lemma 1.20. Let k ě 2 and n ě 2k. If F Ď
`

rns

k

˘

is a shifted non-trivial
intersecting family, then

|F | ď

ˆ

n ´ 1
k ´ 1

˙

´

ˆ

n ´ k ´ 1
k ´ 1

˙

` 1 .

The proof of Lemma 1.20 is based on a series of operations performed to the
sets in F .
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Proof of Lemma 1.20. We first shall prove that for every set A P F , there is an
integer i P rns with

|A X r2is| ě i . (1.6)

Indeed, let A “ ta1, . . . , aku be an increasing ordering of the elements of A, that
is 1 ď a1 ă a2 ă ¨ ¨ ¨ ă ak ď n. For a contradiction, assume that for all j P rks we
have aj ą 2j. Since the F is shifted, the set of even numbers F “ t2, 4, . . . , 2ku P F .
Indeed for every j P rks note that 2j P pA∖ajqY2j P σ2j,aj

pFq. Thus, F results from
a at most k shifting operations applied to A. Moreover, after k shifting operations
applied to F , we obtain the set of odd numbers F 1 “ t1, 3, . . . , 2k ´ 1u P F .
However, F X F 1 “ ∅, contradicting the fact that F is intersecting.

Now, we define ℓA as the maximum possible integer satisfying (1.6). That is,
for each set A P F , define

ℓA :“ maxti P rns : |A X r2is| ě iu .

Observe that for A “ ta1, . . . , aku with 1 ď a1 ă a2 ă ¨ ¨ ¨ ă ak ď n we have

ai ą 2i for every i ą ℓA . (1.7)

Therefore, as above, after k ´ ℓA shifting operations, we obtain

pA X r2ℓAsq Y t2ℓA ` 2, 2ℓA ` 4, . . . , 2ku P F . (1.8)

Now, for each A P F define the set

A∆ :“ pAc
X r2ℓAsq Y pA X r2ℓA ` 1, nsq “ A∆r2ℓAs ,

where S∆T :“ pS ∖ T q Y pT ∖ Sq is the symmetric difference between two sets.
The following claim gives some of the mains properties of the p¨q∆ operation.

Claim 1. We have
(i ) |A X r2ℓAs| “ |A∆ X r2ℓAs| “ ℓA,

(ii ) for ℓ ą ℓA, we have |A X r2ℓs| “ |A∆ X r2ℓs| ă ℓ, and
(iii ) if 1 R A, then 1 P A∆ and ℓA ě 2.

Proof of the claim: For (i ), observe that |A X r2ℓAs| ě ℓA simply by definition
of ℓA. If |A X r2ℓAs| ě ℓA ` 1, then |A X r2pℓA ` 1qs| ě ℓA ` 1, contradicting he
maximality of ℓA. Then, |A X r2ℓAs| “ ℓA, and |A∆ X r2ℓAs “ ℓA follows directly
from the definition of A∆.

For (ii ), let ℓ ą ℓA and note that for every a P r2ℓA ` 1, ℓs we have a P A if and
only if a P A∆. Thus,

|A X r2ℓs| “ |A X r2ℓAs| ` |A X r2ℓA ` 1, ℓs|

“ |A∆
X r2ℓAs| ` |A∆

X r2ℓA ` 1, ℓs|

“ |A∆
X r2ℓs| ,
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where we used (i ). For the inequality in (ii ), note that |A X r2ℓs| ě ℓ yields a
contradiction with the maximality of ℓA.

Finally, for (iii ), note that if ℓA “ 1 then 2 P A. Therefore, (1.8) implies the set
of even numbers F “ t2, 4, . . . , 2ku P F . After shifting operations on F , we get
that the set of odd numbers F 1 “ t1, 3, . . . , 2k ´ 1u P F . This contradicts the fact
that F is intersecting. Hence ℓA ě 2, and therefore, 1 P A∆. ■

Set Fp1q “ tA P F : 1 R Au and define the following ma φ : Fp1q ÝÑ
`

r2,ns

k´1

˘

by

φpAq :“ A∆ ∖ 1 .

The following claim summarises the main properties of φp¨q.

Claim 2. We have
(a ) φ is injective,
(b ) φpFp1qq X Fp1q “ ∅, and
(c ) for A P Fp1q ∖ tr2, k ` 1su we have φpAq X r2, k ` 1s ‰ ∅,

where Fp1q “

!

A P
`

rns∖1
k´1

˘

: A Y 1 P F
)

.

Proof of the claim: For (a ), take two different sets A, B P Fp1q, and observe that
if ℓA ă ℓB then, due to (ii ), we have

|A∆r2ℓBs| ă ℓB “ |B∆r2ℓBs| ,

meaning that φpAq ‰ φpBq. If ℓA “ ℓB “ ℓ, then A ‰ B implies

φpAq “ A∆ ∖ 1 “ A∆r2ℓs ∖ 1 ‰ B∆r2ℓs ∖ 1 “ B∆ ∖ 1 “ φpBq .

For (b ), suppose there are A, B P F with φpAq “ B∖1 and set ℓ :“ ℓA. Because
of (1.8), we have

F1 “ pA X r2ℓsq Y t2ℓA ` 2, 2ℓA ` 4, . . . , 2ku P F .

Moreover, since B X r2ℓ ` 1, ns “ A X r2ℓ ` 1, ns and (1.7) we have

F2 “ pB X r2ℓsq Y t2ℓA ` 1, 2ℓA ` 3, . . . , 2k ´ 1u P F ,

as well. However, B X r2ℓs “ Ac X r2ℓs yields that F1 X F2 “ ∅, contradicting the
fact that F is intersecting.

For (c ) observe that, due to (iii ) and (i ), if 2ℓA ď k ` 1, then

|A∆
X rk ` 1s| ě |A∆

X r2ℓAs| “ ℓA ě 2 .

Thus |φpAq X r2, k ` 1s| ě |A∆ X r2ℓAs| ´ 1 ě 1, meaning φpAq X r2, k ` 1s ‰ ∅.
When 2ℓA ě k ` 1 observe that if φpAq X r2, k ` 1s “ ∅ then

φpAq X r2, k ` 1s “ pA∆ ∖ 1q X r2, k ` 1s “ Ac
X r2, k ` 1s “ ∅ ,

meaning that A Ď r2, k ` 1s. As |A| “ k, we have A “ r2, k ` 1s. ■



11

Now we use the properties of φp¨q to finish the proof. Since F is shifted and
non-trivial we have

A‹ :“ r2, k ` 1s P F .

As F is intersecting, for every A P Fp1q we have A X A‹ ‰ ∅. Further, because
of (c ) for every A P Fp1q ∖ tA‹u we have φpAq X A‹ ‰ ∅. Therefore,

Fp1q Y φ
`

Fp1q ∖ tA‹u
˘

Ď

"

A P

ˆ

r2, ns

k ´ 1

˙

: A X A‹ ‰ ∅
*

.

Hence,

|F | ´ 1 “ |Fp1q| ` |Fp1q| ´ 1
“ |Fp1q| ` |φpFp1qq| ´ 1
“ |F Y φ

`

Fp1q ∖ tA‹u
˘

|

ď

ˇ

ˇ

ˇ

ˇ

"

A P

ˆ

r2, ns

k ´ 1

˙

: A X A‹ ‰ ∅
*ˇ

ˇ

ˇ

ˇ

“

ˆ

n ´ 1
k ´ 1

˙

´

ˆ

n ´ k ´ 1
k ´ 1

˙

,

where the second identity follows from (a ) and the third one from (a ) and (b ). □

It is it clear how Theorem 1.18 follows from Lemmas 1.19 and 1.20.

§2. Proofs via Katona’s circle

In this section we introduce the so-called circle method, which was introduced
by Katona in the 70s [8, 9]. It was famously applied to give an amazing insightful
new proof of Erdős-Ko-Rado [8]. Later, this method helped to prove many other
results (for a survey, see [5]).

2.1. Basic definitions. We need to introduce the notion of circles and arcs. Before
giving a formal definition, let us consider the following rough description. Loosely
speaking, a circle is a circular arrangement of the elements in rns that describes
which pairs of elements are ‘consecutive’. More precisely, for a permutation
pa1, a2, . . . , anq of the elements of rns, all pairs pai, ai`1q for every i P rn ´ 1s

and pan, a1q are considered to be consecutive elements in the circle induced by
the permutation. Consequently, we say that two permutations pa1, a2, . . . , anq

and pb1, . . . , bnq induce the same circle if their consecutive elements are the same.
For example pa1, a2, . . . , anq and pa2, a3, . . . , an, a1q induce the same circle. Given
a fixed circle pa1, . . . , anq and i ă k ď n, a set of consecutive elements of the
form tai, ai`1, . . . , ai`ku is called arc, where we take the sum of indices modulo n.

The informal definitions above are enough to understand the Katona’s circle
method. However, to avoid possible confusion, let us introduce the formal definition.

Definition 2.1 (circles and arcs). Given n P N and two permutations π1 “

pa1, . . . , anq P Sn and π2 “ pb1, . . . , bnq P Sn, we say they are circularly equivalent
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denoted by π1 „ π2 if there is a k P rns such that ai “ bi`k for every i P rns, where
the sum is taken modulo n. It is easy to see that „ is an equivalent relation.

The equivalence classes given by the relation of circular equivalence are called
circles, and the set of circles is denoted by Cn “ Sn{ „. We will slightly abuse
notation and will not distinguish between the circle rpa1, . . . , anqs and the per-
mutation pa1, . . . , anq. In other words, we will consider a circle to be any of its
representatives.

Finally, given a circle π “ pa1, . . . , anq P Cn and k P rn ´ 1s we define the set of
arcs in π of length k by

Apπ, kq :“ tai, . . . , ai`k´1 P 2rns : i P rnsu,

where the sum is taken modulo n. Moreover, the sets of all arcs will be denoted
by Apπq “

Ť

kPrn´1s
Apπ, kq. Given an arc ai, . . . , ai`k´1 P Apπ, kq we say that ai

is its first element and that ai`k´1 is its last element.

Note that ‘arcs of length zero’ and ‘arcs of length n’ are excluded from these
definitions.

Given n P N, k P rn ´ 1s, and π P Cn the following identities are easy to deduce

|Cn| “ pn ´ 1q!, |Apπ, kq| “ n, and |Apπq| “ npn ´ 1q .

To show the method in action, let us show the following elegant proof of
Erdős-Ko-Rado Theorem given by Katona [8].

2.2. Erdős-Ko-Rado Theorem (reprise).

Proof of Theorem 1.8. Let n ě 2k and let F Ď
`

rns

k

˘

be an intersecting family.
Given a circle π P Cn, define

Fpπq :“ F X Apπq ,

and note that Fpπq is intersecting.

Claim 3 (Erdős-Ko-Rado in the circle). For every π P Cn we have |Fpπq| ď k.

Proof of the claim: Pick any arc A “ a1, . . . , ak P Fpπq, where a1 and ak are the
first and last element respectively. As Fpπq is intersecting for every B P Fpπq∖tAu

either the first or last element of B lies in A. Since A is the arc of length k whose
first element is a1, the first element of B cannot be a1. Similarly ak cannot by the
last element of B.

Let Li be the arc of length k ending in ai and Fi the arc of length k starting
in ai`1. Hence

Fpπq Ď tLi : i P rk ´ 1su Y tFi : i P rk ´ 1su .

Since n ě 2k, we have Li X Fi “ ∅, and therefore, for every i P rk ´ 1s at
most one of the two sets Li or Fi is in Fpπq. Adding the initial set A we
obtain |Fpπq| ď pk ´ 1q ` 1 “ k. ■
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Now, for every set A P F , there are k!pn ´ kq! circles π P Cn such that A P Fpπq.
That entails

ÿ

πPCn

|Fpπq| “ k!pn ´ kq!|F | .

Applying Claim 3 and recalling that |Cn| “ pn ´ 1q! we have

|F | “
1

k!pn ´ kq!
ÿ

πPCn

|Fpπq| ď
kpn ´ 1q!
k!pn ´ kq! “

ˆ

n ´ 1
k ´ 1

˙

.

□

2.3. Sperner Theorem via Katona’s circle. A family F Ď 2rns is called an
antichain if there are no two sets A, B P F with A Ď B. Observe that if all sets
in F are of the same size, then F is an antichain.

Sperner’s Theorem states that the maximum possible size of antichain is attained
by a family that consists in all sets of certain size. In other words, the extremal
families are of the form

`

rns

k

˘

, and it is easy to see that the maximum of the
binomial coeficient is attained when k “ tn{2u.

Theorem 2.2 (Sperner’s Theorem). Let F Ď 2rns be an antichain. Then

|F | ď

ˆ

n
X

n
2

\

˙

.

The first proof was given by Sperner in 1928 [13]. The following proof was
presented by Lubell in a one-page paper [12].

Proof of Theorem 2.2. Set m “ tn
2 u. Note that the function fpkq “

`

n
k

˘

attain its
maximum for k “ m. That is

`

n
k

˘

ď
`

n
m

˘

, for every k P rns. Diving by n! we obtain

1
k!pn ´ kq! ď

1
m!pn ´ mq! . (2.1)

We now use the Katona’s method. Given π P Cn let Fpπq “ Apπq X F , and note
that Fpπq is an antichain.

Claim 4 (Circular Sperner). For every π P Cn we have |Fpπq| ď n.

Proof of the claim: If there are two sets A, B P F with the same last element then
we have A Ď B or B Ď A. Therefore, as Fpπq is an antichain, for every i P rns

there is at most one set Fpπq ending in i. This yields, |Fpπq| ď n. ■
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As in the proof of Theorem 1.8 observe that for A P F , there are |A|!pn ´ |A|q!
circles π P Cn such that A P Fpπq. Hence, we have

|F | “
ÿ

πPCn

ÿ

APFpπq

1
|A|!pn ´ |A|q!

(2.1)
ď

ÿ

πPCn

ÿ

APFpπq

1
m!pn ´ mq!

ď
ÿ

πPCn

n

m!pn ´ mq! “
npn ´ 1q!

m!pn ´ mq! “

ˆ

n

m

˙

,

where the last inequality follows from Claim 4 □

§3. Kruskal-Katona Theorem: Minimal shadows

3.1. Preliminaries.

Definition 3.1. Given a family of sets F Ď
`

rns

k

˘

, the shadow of F is defined by

BF “

"

X P

ˆ

rns

k ´ 1

˙

: there is an x P rns with X Y x P F
*

.

In other words, the shadow of F is the family of all k´1 subsets of sets in F . The
main question behind Kruskal-Katona Theorem (Theorem 3.9) is the following.

Question 3.2. Given a family F Ď
`

rns

k

˘

of size m, how small BF can be?

Both Katona [7] and Kruskal [10] independently found a surprisingly detailed
answer to this question. The proof we present here was introduced by Frankl [3].

Before, going any further let us prove the following two preliminary lemmas.
The first one state that we can essentially restrict our attention to shifted families.

Lemma 3.3. Given F Ď
`

rns

k

˘

, we have that

Bpσi,jpFqq Ď σi,jpBFq .

Proof. Let X P Bpσi,jpFqq, and therefore, there are x P rns and A P F such
that X Y x “ σi,jpAq. We shall prove that X P σi,jpBF q. Indeed, this follows from
a straightforward case analysis.

Suppose first that σi,jpAq “ A. Then X Y x “ A, and hence X P BF . Note
that if σi,jpXq “ X we are done, as that implies that X P σi,jpBFq. If x “ i,
then pX ∖ jq Y i “ pX ∖ jq Y x “ A ∖ j, implying that pX ∖ jq Y i P BF .
Therefore, σi,jpXq “ X (as pX ∖ jq Y i is already in BF). If x ‰ i, we have j P A

and i R A, thus, since σi,jpAq “ A, we have pA ∖ jq Y i P F . That yields
pX ∖ jq Y i “ ppA ∖ jq Y iq ∖ x P BF , again meaning that σi,jpXq “ X as desired.

Now suppose σi,jpAq “ pA∖ jq Y i. If x “ i, then σi,jpAq∖ i “ A∖ j “ X which
yields X P BF . Since j R X, we have σi,jpXq “ X, implying that X P σi,jpBFq.
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If x ‰ i, then A ∖ x “ pX ∖ iq Y jq meaning that pX ∖ iq Y j P BF . If we suppose
further that σi,jppX ∖ iq Y jq ‰ pX ∖ iq Y j, then we have

σi,jppX ∖ iq Y jq “

´

`

pX ∖ iq Y jq ∖ j
¯

Y i “ X , (3.1)

meaning that X P σi,jpBFq. Then, we may assume that σi,jppX∖iqYjq “ pX∖iqYj.
Considering the identity in (3.1) we have that X is ‘blocked’ in BF . In other
words, X P BF . Therefore, since σi,jpXq “ X, we have X P σi,jpBFq. □

Proposition 3.3 means that applying the shifting operation will only decrease
the size of the shadow. Hence, the minimal is attained by a shifted family.

The following lemma gives useful properties for the shadows of shifted families.

Lemma 3.4. Let F
`

rns

k

˘

be a shifted family. Then, we have that
(1 ) BpFp1q

˘

Ď Fp1q and
(2 ) |BF | “ |Fp1q| ` |BpFp1qq| ,

where Fp1q “

!

A P
`

rns∖1
k´1

˘

: A Y 1 P F
)

and Fp1q “

!

A P
`

rns∖1
k

˘

: 1 R A P F
)

.

Proof. For (1 ) let X P BpFp1q
˘

, then there is an x P rns∖1 such that xYX P Fp1q.
As F is shifted, we have σ1,xpXYxq “ X, meaning that XY1 P F . Thus, X P Fp1q.

To prove (2 ), let

H1 “ tX P BF : 1 P Xu and H1 “ tX P BF : 1 R Xu .

Note that BF “ H1 9YH1. We shall prove that |Fp1q| “ |H1| and |BpFp1qq| “ |H1|.
Take an arbitrary X P H1. Then there is an x P rns with X Y x P F and

since F is shifted, we have X Y 1 P F as well (note that we might have x “ 1).
Hence X P Fp1q. Reciprocally, if we take an arbitrary set X P Fp1q, then XY1 P F ,
and then X P BF , with 1 R X. In other words, X P H1. Consequently, we
have H1 “ Fp1q.

To show that |BpFp1qq| “ |H1| define H1
1 “

!

Y P
`

rns

k´2

˘

: Y Y 1 P H1

)

and note

|H1
1| “ |H1| (3.2)

Directly form the definition, for any set Y P H1
1, there is a y P rns ∖ 1 such

that Y Y y Y 1 P F . Similarly, for every Y P BpFp1qq, there is an y P rns ∖ 1
with Y Y y P Fp1q, meaning that Y Y y Y 1 P F . In other words,

Y P H1
1 ô Y Y 1 P H1

ô Dy P rns ∖ 1 such that Y Y 1 Y y P F
ô Dy P rns ∖ 1 such that Y Y y P Fp1q

ô Y P B
`

Fp1q
˘

.

That clearly yields H1
1 “ B

`

Fp1q
˘

. Applying (3.2) we obtain |H1| “ |B
`

Fp1q
˘

|. □
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3.2. Vanilla version. Before stating the full version, we present the following
simplified version, originally introduced by Lovász [11].

Theorem 3.5 (Kruskal-Katona - Vanilla version [11]). Let k ď m and F Ď
`

rns

k

˘

with |F | ě
`

m
k

˘

, then

|BF | ě

ˆ

m

k ´ 1

˙

.

Proof. Because of Proposition 3.3 we may assume F is shifted. We proceed by
induction on m ` k. When k “ 1 or m “ k the statement in trivial and give us
the base case.

First, we shall prove

|Fp1q| ě

ˆ

m ´ 1
k ´ 1

˙

. (3.3)

Suppose that (3.3) does not hold, i.e. |Fp1q| ă
`

m´1
k´1

˘

. Since |F | “ |Fp1q| ` |Fp1q|,
we have

|Fp1q| “ |F | ´ |Fp1q| ą

ˆ

m

k

˙

´

ˆ

m ´ 1
k ´ 1

˙

“

ˆ

m ´ 1
k

˙

.

Then, we can use the induction hypothesis for Fp1q, obtaining |B
`

Fp1q
˘

|ě
`

m´1
k´1

˘

.
However, this is a contradiction, since (1 ) in Lemma 3.4 yields |B

`

Fp1q
˘

| ď

|Fp1q| ă
`

m´1
k´1

˘

due to our supposition. Therefore, (3.3) holds.
Now, due to (3.3) we may apply the induction hypothesis now to Fp1q and

deduce that |B
`

Fp1q
˘

| ě
`

m´1
k´2

˘

. Therefore, due to (2 ) from Lemma 3.4 we have

|BF | “ |Fp1q| ` |B
`

Fp1q
˘

| ě

ˆ

m ´ 1
k ´ 1

˙

`

ˆ

m ´ 1
k ´ 2

˙

“

ˆ

m

k ´ 1

˙

□

3.3. Kruskal-Katona Theorem. Observe that we can apply Theorem 3.5 only
when the size of the family |F | is of the form

`

m
k

˘

. Furthermore, for every x P R

define
ˆ

x

k

˙

:“ xpx ´ 1qpx ´ 2q ¨ ¨ ¨ px ´ k ` 1q

k! .

Then the proof of Theorem 3.5 still holds answering Question 3.2 whenever |F | is
of the form

`

x
k

˘

for any real x P R.
To state the full version of the theorem, we need the following definition.

Definition 3.6. The colexicographical order, Ì is a total order
`

N

k

˘

, the set of
k-sets of natural numbers, defined by

A Ì B ðñ max A ∖ B ď max B ∖ A .

Intuitively, we have that sets containing large elements will appear later in the
colexicographical order. For example for k “ 3, the first 3-sets in the colexico-
graphical order are

123, 124, 134, 234, 125, 135, 235, 145, 245, 345, 126, 136 (3.4)
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Observe that no element containing the number 6 appear until all elements
from

`

r5s

3

˘

have already appeared.

Definition 3.7. Given m ě k we define L pkqpmq to be the first m sets of size k

in the colexicographical order.

Thus, (3.4) corresponds to the set L p3qp12q. The following fact is easy to see.

Fact 3.8. Let k ď m ď n and A P
`

rns

k

˘

be a set such that m P A. Then for
every B P

`

rm´1s

k

˘

we have B Ì A. □

In other words, in the colexicographical order, a set containing m P N is larger
than all elements in

`

rm´1s

k

˘

. That is to say, if m P A, then A R L pkq
``

m´1
k

˘˘

.
Moreover, we have

L pkq

ˆˆ

n

k

˙˙

“

ˆ

rns

k

˙

.

Kruskal-Katona Theorem states that the families that minimise the shadow are
precisely the initial segments of the colexicographical order.

Theorem 3.9 (Kruskal-Katona). For every family F Ď
`

rns

k

˘

such that |F | “ m

we have
|BF | ě |BL pkq

pmq| .

Theorem 3.9 is stronger than the vanilla version given in Theorem 3.5. However,
the main ideas for the proof of the former, are already present in the proof of the
later.

The main difference between Theorems 3.5 and 3.9 is that the size of F in
Theorem 3.9 is not necessarily of the form

`

m
k

˘

. To bring the two theorems together,
assume m P N can be ‘represented’ as a sum of binomial coefficients:

m “

k
ÿ

j“ℓ

ˆ

aj

j

˙

, (3.5)

for integers ak ą ak´1 ą ¨ ¨ ¨ ą aℓ ě ℓ ě 1. Indeed, it is not hard to prove that
every natural number k ď m P N has a representation like (3.5). It is called the
cascade representation of m.

The following lemma brings together the cascade representation and the initial
segment of the colexicographical order.

Lemma 3.10. Let k ď m with m “
ř

jPrℓ,ks

`

aj

j

˘

for integers ak ą ak´1 ą ¨ ¨ ¨ ą

aℓ ě ℓ ě 1. Then,

|BL pkq
pmq| “

k
ÿ

j“ℓ

ˆ

aj

j ´ 1

˙

.

Proof. We proceed by induction on k. Note that for k “ 1 the result follows easily
for every m ě 1.

We need the following claim about binomial coefficients.
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Claim 5. Given a ě k ě 2
k´1
ÿ

j“1

ˆ

a ´ j

k ´ j

˙

ă

ˆ

a

k ´ 1

˙

.

Before proving Claim 5, let us first see how it is helpful for the proof of the
lemma. Observe that since ak ą ak´1 ą ¨ ¨ ¨ ą aℓ ě ℓ ě 1 it holds

m “
ÿ

jPrℓ,ks

ˆ

aj

j

˙

ď

k´1
ÿ

j“0

ˆ

ak ´ i

k ´ i

˙

ă

ˆ

ak

k

˙

`

ˆ

ak

k ´ 1

˙

“

ˆ

ak ` 1
k

˙

,

where the last inequality follows from Claim 5. Then we have
ˆ

ak

k

˙

ď m ă

ˆ

ak ` 1
k

˙

. (3.6)

Let m2 “ m ´
`

ak

k

˘

“
řk´1

j“ℓ

`

aj

j

˘

and observe that its cascade representation is the
same as in m except for the largest term. From Definition 3.6, Fact 3.8, and (3.6)
it is easy to see that

L pkq
pmq “

ˆ

raks

k

˙

Y
␣

A Y ak`1 : A P L pk´1q
pm2q

(

.

Note that for every set A P BL pk´1qpm2q it trivially holds that ak`1 Y A R
`

raks

k´1

˘

.
Therefore, we deduce

|BL pkq
pmq|“

ˆ

ak

k ´ 1

˙

`
ˇ

ˇBL pk´1q
pm2q

ˇ

ˇ“

ˆ

ak

k ´ 1

˙

`

k´1
ÿ

j“ℓ

ˆ

aj

j ´ 1

˙

“

k
ÿ

j“ℓ

ˆ

aj

j ´ 1

˙

,

where we applied the induction hypothesis for L pk´1qpm2q.
We now show the proof of Claim 5.

Proof of the claim: We proceed by induction on a ` k. For k “ 2 the statement
is trivial for every a ě 2 and given k ě 2, the statement is trivial for a “ k.
Let a ě k ě 3 and apply the induction hypothesis (twice) to see that

k´1
ÿ

j“1

ˆ

a ´ j

k ´ j

˙

“

k´1
ÿ

i“1

ˆ

a ´ j ´ 1
k ´ j

˙

`

ˆ

a ´ j ´ 1
k ´ j ´ 1

˙

ă

ˆ

a ´ 1
k ´ 1

˙

`

ˆ

a ´ 1
k ´ 2

˙

“

ˆ

a

k ´ 1

˙

.

■

□

Finally we are ready for the proof of Theorem 3.9. We follow the same structure
as the proof of Theorem 3.5.

Proof of Theorem 3.9. Because of Proposition 3.3 we may assume F is shifted.
We proceed by induction on m ` k. When k “ 1 or m “ 1 the statement in trivial
and give us the base case.
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Let the cascade representation of m be given by

m “

k
ÿ

j“ℓ

ˆ

aj

j

˙

,

for integers ak ą ak´1 ą ¨ ¨ ¨ ą aℓ ě ℓ ě 1.
We first prove the following claim

Claim 6. |Fp1q| ě

k
ÿ

j“ℓ

ˆ

aj ´ 1
j ´ 1

˙

.

Proof of the claim: Let m2 “
řk

j“ℓ

`

aj´1
j´1

˘

and m`
2 “

řk
j“ℓ

`

aj

j´1

˘

, and suppose that
the claim does not hold, i.e. |Fp1q| ă m2. Since |F | “ |Fp1q| ` |Fp1q|, we have

|Fp1q| “ |F | ´ |Fp1q|

ą m ´ m2 “

k
ÿ

j“ℓ

ˆ

aj

j

˙

´

ˆ

aj ´ 1
j ´ 1

˙

“

k
ÿ

j“ℓ

ˆ

aj ´ 1
j

˙

“ m`
2

(3.7)

Suppose that

|B
`

Fp1q
˘

| ě m2 , (3.8)

then (1 ) in Lemma 3.4 would yield m2 ď |B
`

Fp1q
˘

| ď |Fp1q| which contradicts
our supposition that |Fp1q| ă m2.

We finish the proof of the claim by showing (3.8). We consider two cases.

First Case: aℓ ą ℓ. Due to (3.7) we may apply the induction hypothesis
to Fp1q to obtain |B

`

Fp1q
˘

| ě |BL kpm`
2 q|. In this case we have ak ´1 ą ak´1 ´1 ą

¨ ¨ ¨ ą aℓ ´ 1 ě ℓ meaning that m`
2 “

ř

jPrℓ,ks

`

aj´1
j

˘

is a cascade representation.
Hence Lemma 3.10 yields

|B
`

Fp1q
˘

| ě |BL k
pm`

2 q| “

k
ÿ

j“ℓ

ˆ

aj ´ 1
j ´ 1

˙

“ m2 ,

as desired.
Second Case: aℓ “ ℓ. As before, the inequality (3.7) allow us to apply the

induction hypothesis to Fp1q to obtain |B
`

Fp1q
˘

| ě |BL kpm`
2 q|. However, in this

case m`
2 “

ř

jPrℓ,ks

`

aj´1
j

˘

is not a cascade representation.
Let t to be the maximum j P rℓ, ks such that aj “ j, and note that since at ą

at´1 ą ¨ ¨ ¨ ą aℓ “ ℓ ě 1 we have aj “ j for every j P rℓ, ts. Since
`

aj´1
j

˘

“
`

j´1
j

˘

“ 0
for every j P rℓ, ts, the (strict) inequality (3.7) yields

|Fp1q| ě m`
2 ` 1 “

k
ÿ

j“t`1

ˆ

aj ´ 1
j

˙

` 1 “

k
ÿ

j“t`1

ˆ

aj ´ 1
j

˙

`

ˆ

t

t

˙

,
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which is a cascade representation. Therefore, applying the induction hypothesis
and Lemma 3.10 as before, we obtain

|BpFp1qq| ě |BL k
pm`

2 ` 1q|

“

k
ÿ

j“t`1

ˆ

aj ´ 1
j ´ 1

˙

`

ˆ

t

t ´ 1

˙

“

k
ÿ

j“t`1

ˆ

aj ´ 1
j ´ 1

˙

`

t
ÿ

j“1

ˆ

j ´ 1
j ´ 1

˙

ě

k
ÿ

j“ℓ

ˆ

aj ´ 1
j ´ 1

˙

“ m2 ,

where we use the fact that aj “ j for j P rℓ, ts.
Hence, in both cases, inequality (3.8) holds. ■

Using Claim 6 we may apply the induction hypothesis now to Fp1q and deduce

|B
`

Fp1q
˘

| ě |BL pk´1q
pm2q| .

Observe that if ℓ ą 1, then m2 “
řk

j“ℓ

`

aj´1
j´1

˘

“
řk´1

j“ℓ´1
`

aj`1´1
j

˘

is a cascade
representation for k ´ 1. Thus we may apply Lemma 3.10 and obtain

|B
`

Fp1q
˘

| ě |BL pk´1q
pm2q| “

k
ÿ

j“ℓ

ˆ

aj ´ 1
j ´ 2

˙

. (3.9)

If ℓ “ 1, then we have m2 ´ 1 “
řk

j“ℓ`1
`

aj´1
j´1

˘

“
řk´1

j“ℓ

`

aj`1´1
j

˘

is a cascade
representation for k ´ 1. Thus, as before, we may deduce

|B
`

Fp1q
˘

| ě |BL pk´1q
pm2q| ě |BL pk´1q

pm2 ´ 1q| “

k
ÿ

j“ℓ`1

ˆ

aj ´ 1
j ´ 2

˙

Since
`

aℓ´1
ℓ´2

˘

“
`

aℓ´1
´1

˘

“ 0 inequality (3.9) also holds for this case.
Finally, due to the formula given by (2 ) in Lemma 3.4, we conclude

|BF | “ |Fp1q| ` |B
`

Fp1q
˘

|

ě

k
ÿ

j“ℓ

ˆ

aj ´ 1
j ´ 1

˙

`

ˆ

aj ´ 1
j ´ 2

˙

“

k
ÿ

j“ℓ

ˆ

aj

j ´ 1

˙

“ |BL pkq
pmq| ,

where the first inequality follows from Claim 6 and (3.9) and the last identity
follows from Lemma 3.10. □

It is possible extend Kruskal-Katona theorem in the following way. Given t ă

k ď n and a family F Ď
`

n
k

˘

, define the t-shadow of F by

B
tF “

"

X P

ˆ

n

t

˙

: there is a Y P

ˆ

n

k ´ t

˙

such that X Y Y P F
*

.

The following is a generalisations of Theorem 3.9.
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Theorem 3.11 (Kruskal-Katona). Let t ă k ď n. For every family F Ď
`

rns

k

˘

such that |F | “ m we have

|B
tF | ě |B

tL pkq
pmq| .

□

3.4. Lexicographical ordering.

Definition 3.12. The lexicographical order, ă is a total order
`

N

k

˘

, the set of
k-sets of natural numbers, defined by

A ă B ðñ min A ∖ B ă min B ∖ A .

Let the reversed colexicographical ordering Ìr be the colexicographical ordering
after the reversal of the interval rns. In other words, Ìr is defined by

A Ìr B ðñ min A ∖ B ą min B ∖ A , (3.10)

and note that (3.10) is exactly the inverse of the lexicographical ordering.

Definition 3.13. Given n, m ě k we define Lpkqpmq to be the first m sets of size k

on the interval rns in the lexicographical order.

The following fact is easy to prove.

Fact 3.14. Let n ě m ě k.

Lpkq
pmq “ L pn´kq

r pmq ,

where L pn´kq
r pmq denotes the first m sets of size k on the interval rns in reversed

colexicographical ordering.

Proof. Let A, B P
`

rns

k

˘

and observe that

A ă B ô min A ∖ B ă min B ∖ A ô min Bc ∖ Ac
ă min Ac ∖ Bc

ô Ac
Ìr Bc ,

Which yields the desired result. □

Now we are ready for the the following is a simple application of Theorem 3.11.

Theorem 3.15. Given k ď n, let F Ď
`

rns

k

˘

. If F is intersecting, then Lpkqp|F |q

is intersecting.

Proof. We start the proof with the following claim.

Claim 7. F is intersecting if and only if F X BkF “ ∅.

Proof of the claim:
ñ) Suppose that F is intersecting and that there is a set A P F X BkF . That

means that there is a set B Ě A such that B P F . In particular, Bc P F
which is a contradiction, since A X Bc “ ∅.
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ð) Suppose that F X BkF “ ∅ and that F is not intersecting. In particular
there are two sets A, B P F such that A X B “ ∅. In other words, A Ď Bc.
This is a contradiction as it implies that A P BkF X F .

■

Fix m “ |F | and m1 “ |BkL pn´kqpmq| and observe that due to Fact 3.14.

Lpkq
pmq X B

kLpkqpmq “ Lpkq
pmq X B

kL pn´kq
r pmq “ Lpkq

pmq X L pkq
r pm1

q (3.11)

where the last identity follows from the fact that the k-shadow of the first pn ´ kq-
sets in the reversed colexicographical ordering are also the first k-sets of the
reversed colexigraphical ordering.

Since the the reversed colexicographical ordering is exactly the inverse of the
lexicographical ordering, the set L pkq

r pm1q corresponds exactly with the m1 last
k-sets in

`

rns

k

˘

in the lexicographical ordering. Therefore, due to Claim 7 if Lpkqpmq

is not intersecting, we have

Lpkq
pmq X B

kLpkqpmq ‰ ∅ ðñ m ` m1
ą

ˆ

n

k

˙

.

Finally, due to Theorem 3.11, this implies

|F | ` |B
kF | ě |F | ` |B

kL pn´kq
pmq| “ m ` m1

ą

ˆ

n

k

˙

.

However this yields F X BkF ‰ ∅ contradicting the fact that F is intersecting.
□
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