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Abstract. Given two non-negative integers n and s, define mpn, sq to
be the maximal number m such that every hypergraph H on n vertices
and with at most m edges has a vertex x such that |Hx| ě |EpHq| ´ s,
where Hx “ tHztxu : H P EpHqu. The problem of determining the
limit mpsq “ limnÑ8

mpn,sq
n

was posed by Füredi and Pach and by Frankl
and Tokushige. While the first results were only for specific small val-
ues of s, Frankl determined mp2d´1

´ 1q for all d P N. Here we prove

that mp2d´1
´ cq “ p2d´cq

d
for every c, d P N with d ě 4c and give an

example showing that this equality does not hold anymore for d “ c.
The other line of research on this problem is to determine mpsq for
small values of s. In this line, our second result determines mp2d´1

´ cq
for c P t3, 4u. This solves more instances of the problem for small s and
in particular solves a conjecture by Frankl and Watanabe.

Keywords: Extremal set theory, traces of sets, abstract simplicial com-
plexes

1 Introduction

A hypergraph H is a pair pV,Fq where V is the set of vertices and F Ď 2V is the
set of edges. In the literature, the problems we consider in this work are often
presented in the context of families rather than hypergraphs. If not necessary, it
is then not distinguished between the family F Ď 2V and the hypergraph pV,Fq.
We will follow this notational path.

Let V be an n-element set and let F be a family of subsets of V . For a
subset T of V , define the trace of F on T by F|T “ tF X T : F P Fu. For
integers n, m, a, and b, we write

pn,mq Ñ pa, bq

if for every family F Ď 2V with |F | ě m and |V | “ n, there is an a-element
set T Ď V such that |F|T | ě b (we also say that pn,mq arrows pa, bq).

In this context, Füredi and Pach [5] and, more recently, Frankl and Tokushige
[3] posed the following problem3:

3 There have been slightly different versions in use for the arrowing notation and for
what we denote by mpn, sq. In this work, we follow the notation in [3].
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Problem 1. Given non-negative integers n and s, what is the maximum value
mpn, sq such that for every m ď mpn, sq, we have

pn,mq Ñ pn´ 1,m´ sq.

As described in the short abstract, this problem can also be formulated as
finding the maximal number mpn, sq such that the following holds. In every hy-
pergraph H with some n-set V as vertex set and with at most mpn, sq edges, there
is a vertex x such that |Hx| ě |H| ´ s, where Hx “ H|V ztxu “ tHztxu : H P Hu.

A family F is hereditary if for every F 1 Ď F P F , we have that F 1 P F . In [2],
Frankl proves that among families with a fixed number of edges and vertices, the
trace is minimised by hereditary families. Thus, the problems considered here,
and in particular Problem 1, can be reduced to hereditary families. Note that in
hereditary families, Problem 1 is asking for the maximum number of edges such
that there is always a vertex of small degree (as usual, we define the degree of a
vertex v as the number of edges that contain v).

The investigation of this problem started with Bondy [1] and Bollobás [7]
determining mpn, 0q and mpn, 1q, respectively. Later Frankl [2] and Frankl and
Watanabe [4] proved the following identities

mpn, 2d´1 ´ 1q “
n

d
p2d ´ 1q and mpn, 2d´1 ´ 2q “

n

d
p2d ´ 2q (1)

for d, n P N and d | n.
Consider a family consisting of a set of size d and all possible subsets, and

take n{d vertex disjoint copies of it. The resulting family has minimum de-
gree 2d´1 and n

d p2
d´ 1q` 1 edges. Thus, this family is an extremal construction

for the first identity of (1). By taking out all sets of size d, we obtain an extremal
construction for the second one.

More generally, for an integer c ě 1, if we arbitrarily take out pc´ 1q sets in
each of those d-sets, then the minimum degree is at least 2d´1 ´ c ` 1 and the
number of edges is n

d p2
d´ cq`1. More precisely for an arbitrary family A Ď 2rds

of size pc´ 1q we consider the family

FcpAq “
!

F ` pi´ 1qd : F P 2rdszA and i P
”n

d

ı)

Ď 2rns.

These families show that mpn, 2d´1´cq ď n
d p2

d´cq. The following theorem says

that in fact we have equality as long as c ď d
4 .

Theorem 1 (Main theorem). Let d, c, n P N with d ě 4c and d|n. Then

mpn, 2d´1 ´ cq “
n

d
p2d ´ cq.

Remark 1. In fact, our proof yields that for d ě 4c and m ď n
d p2

d ´ cq, we
have pn,mq Ñ pn´ 1,m´ p2d´1 ´ cqq without any divisibility conditions on n.
The assumption d|n is only necessary for the extremal constructions showing the
maximality of n

d p2
d ´ cq. Analogous remarks hold for the identities in (1) above

and Theorem 2 below.
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One might also try to solve Problem 1 for small values of s. Apart from the
aforementioned results by Bondy and Bollobás, progress was made by Frankl [2],
Watanabe [11, 12], and by Frankl and Watanabe [4]. In [4], they conjectured
that mpn, 12q “ p28{5` op1qqn. Theorem 1 does not consider cases for which d
is very small in terms of c. The following results extend the identities in (1)
for c “ 3 and c “ 4 and every d ě 5 (for smaller d the respective mpn, sq
is not defined or has been determined previously). In particular, it proves the
conjecture of Frankl and Watanabe for s “ 12 in a strong sense.

Theorem 2. Let d, n P N with d ě 5 and d|n. Then

1. mpn, 2d´1 ´ 3q “ n
d p2

d ´ 3q and
2. mpn, 2d´1 ´ 4q “ n

d p2
d ´ 4q. In particular, mpn, 12q “ 28

5 n.

Note that for larger d, this theorem is of course a special case of Theorem 1.

2 Idea of the proof

Here we present a sketch of the proof. For the complete proof we refer the reader
to [8].

We need to show that for every hereditary hypergraph F on n vertices with
minimum degree at least 2d´1 ´ c` 1, we have that

|F | ě n

d
p2d ´ cq ` 1.

In the proofs of the identities in (1) in [2,4], they observe that by double counting
we have |FztHu| “

ř

vPV

ř

HPLv

1
|H|`1 , where Lv “ tA Ď V : AYtvu P Fu is the

link of the vertex v. Subsequently, they used a generalised form of the Kruskal-
Katona Theorem to obtain a lower bound for

ř

HPLv

1
|H|`1 which is the same for

every vertex v. Due to the aforementioned double counting this in turn yields
the lower bound on the number of edges.

For c ě 3, there are extremal families which show that a general bound
on

ř

HPLv

1
|H|`1 for every vertex v is not sufficient to provide the desired bound

on the number of edges. To overcome this difficulty, first observe that the dou-
ble counting argument can be generalised by interpreting

ř

HPLv

1
|H|`1 as the

weight wF pvq of a vertex v. We will refer to this weight as uniform weight since
it can be imagined as uniformly distributing the unit weight of an edge to each
of its vertices. In contrast, to prove Theorem 1 and Theorem 2, we will use non-
uniform weights. Moreover, instead of bounding the weight of single vertices we
will bound the weight of sets of vertices.

To this end, take a maximal set L of “light” vertices with neighbourhoods4 of
size at most d´ 1 such that the neighbourhoods of all vertices in L are pairwise
disjoint. For all v P L, we call the set Vv “ NpvqYtvu cluster. Observe that if the
size of the neighbourhood of a vertex is at most d ´ 1, then it has to intersect

4 For v P V , the neighbourhood of v is Npvq “ tw P V ztvu : DA P F : tv, wu Ď A}
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one of the clusters. For vertices whose neighbourhood does not intersect any
cluster (and which therefore have a neighbourhood of size at least d), we use the
uniform weight. To bound these uniform weights, we introduce a “local” lemma
which is a close relative to a general form of the Kruskal-Katona theorem. Given
a vertex of fixed degree, it provides a lower bound on the uniform weight and
furthermore the minimum weight surplus if its link deviates enough from the
minimising link. Since the link of every vertex whose neighbourhood does not
intersect any cluster indeed deviates enough from the minimising link (because
their neighbourhood contains at least d vertices), the lemma then gives that
these vertices will have a large uniform weight.

The next step is to bound the weight of vertices in the clusters. The difficulty
is that the weights of different vertices in a cluster might vary. Here, the first key
idea is used. Instead of bounding the weight of each single vertex, we bound the
average weight of the vertices in a cluster. Even if the number of edges inside a
cluster is not large enough, F being hereditary and the minimum degree of F still
provide some lower bound for the number of edges in each cluster. Then a second
local lemma yields that there are several vertices within that cluster whose degree
with respect to the cluster is not the minimum degree in F . Therefore, there exist
several crossing edges, i.e., edges containing vertices from both the inside and
the outside of the cluster. If we use the uniform weight, these crossing edges will
contribute enough to the weight of the cluster, even more than needed.

At this point, we still need to bound the weight of vertices with neighbour-
hoods of size at most d ´ 1 lying outside of any cluster. As mentioned above,
the neighbourhood of every such vertex intersects some cluster, meaning every
such vertex is contained in a crossing edge. Recall that in fact, a uniform weight
on crossing edges would contribute more weight than needed for the inside of a
cluster. Now the second idea comes into play: the unit weight of these edges will
be distributed non-uniformly among its vertices. Hence, when splitting the unit
weight of such a crossing edge according to the aforementioned imbalance, both
sides will get a share that is big enough.

We remark that this strategy is in some sense compatible with the extremal
constructions in so far as that those are composed of disjoint copies of almost
complete families on d vertices (corresponding to the clusters in the proof).

3 Further Remarks and Open Problems

As in the abstract, consider mpsq to be the following limit

mpsq :“ lim
nÑ8

mpn, sq

n
.

It is not difficult to check that mpsq is well-defined (see [4]). Rephrased by
means of this definition, Theorem 1 implies that for c ď d{4, we have that

mp2d´1 ´ cq “ 2d´c
d . Further, given d ě 1, define c‹pdq to be the maximum
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integer such that for every c ď c‹pdq,

mp2d´1 ´ cq “
2d ´ c

d
. (2)

In view of Theorem 1 we have that c‹pdq ě td4 u. The following construction shows
that for d ě 5, c‹pdq ă d.

Construction 1 Let k be a positive integer and set n “ 2dk. Take V to be a
set of n vertices. Consider U1, . . . , U2k to be a partition of V into sets of size d,
and for every set Ui, arbitrarily pick a vertex xi P Ui. Define

G “ tS Ď V : Di P r2ks with S Ď Ui and |S| ď d´ 2u ,

H “ tUiztxiu : i P r2ksu , and

I “ ttxi, xi`1u : i P t1, 3, 5, . . . , 2k ´ 1uu .

One can check that the number of edges of the family F “ G YH Y I is given
by

|G| ` |H| ` |I| “ 2d ´ d´ 2

d
n` 1`

n

d
`

n

2d
“

2d ´ d´ 1
2

d
n` 1.

Finally, since every vertex in V has degree s “ 2d´1 ´ d` 1, we obtain

mpn, 2d´1 ´ dq ď
n

d

ˆ

2d ´ d´
1

2

˙

ă
n

d

`

2d ´ d
˘

,

and so c‹pdq ă d follows.

It would be interesting to understand the behaviour of mp2d´1´cq for c ą d.
To this end, we suggest the following three problems.

Problem 2. Given ε ą 0 sufficiently small, determine mp2d´1 ´ cq for all d P N
and c P N with d ă c ď p1` εqd.

Problem 3. Given ε ą 0 sufficiently small, determine mp2d´1 ´ cq for all d P N
and c P N with d ă c ď d1`ε.

The following problem seems very difficult, and even estimates might be
interesting.

Problem 4. Given ε ą 0 sufficiently small, determine mptp1´ εq2d´1uq for all d P
N.
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