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Abstract. Let k ě 3. Given a k-uniform hypergraph H, the minimum codegree δpHq is
the largest d P N such that every pk´1q-set of V pHq is contained in at least d edges. Given
a k-uniform hypergraph F , the codegree Turán density γpF q of F is the smallest γ P r0, 1s

such that every k-uniform hypergraph on n vertices with δpHq ě pγ ` op1qqn contains a
copy of F . Similarly as other variants of the hypergraph Turán problem, determining the
codegree Turán density of a hypergraph is in general notoriously difficult and only few
results are known.

In this work, we show that for every ε ą 0, there is a k-uniform hypergraph F

with 0 ă γpF q ă ε. This is in contrast to the classical Turán density, which cannot take
any value in the interval p0, k!{kkq due to a fundamental result by Erdős.

§1. Introduction

A k-uniform hypergraph (or k-graph) H consists of a vertex set V pHq together with a
set of edges EpHq Ď V pHqpkq “ tS Ď V pHq : |S| “ ku. Given a k-graph F and n P N, the
Turán number of n and F , expn, F q, is the maximum number of edges an n-vertex k-graph
can have without containing a copy of F . Since the main interest lies in the asymptotics,
the Turán density πpF q of a k-graph F is defined as

πpF q “ lim
nÝÑ8

expn, F q
`

n
k

˘ .

Determining the value of πpF q for k-graphs (with k ě 3) is one of the central open
problems in combinatorics. In particular, the problem of determining the Turán density
of the complete 3-graph on four vertices, i.e., πpK

p3q

4 q, was asked by Turán in 1941 [15]
and Erdős [5] offered 1000$ for its resolution. Despite receiving a lot of attention (see for
instance the survey by Keevash [8]), this problem, and even the seemingly simpler problem
of determining πpK

p3q´

4 q, where K
p3q´

4 is the K
p3q

4 minus one edge, remain open.
Several variations of this type of problem have been considered, see for instance [2, 6, 12]

and the references therein. The variant that we are concerned with here asks how large the
minimum codegree of an F -free k-graph can be. Given a k-graph H “ pV, Eq and S Ď V , the
degree dpSq of S (in H) is the number of edges containing S, i.e., dpSq “ |te P E : S Ď eu|.
The minimum codegree of H is defined as δpHq “ minxPV pk´1q dpxq.

The research leading to these results was partially supported by EPSRC, grant no. EP/V002279/1
(S. Piga). There are no additional data beyond that contained within the main manuscript.
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Given a k-graph F and n P N, Mubayi and Zhao [9] introduced the codegree Turán
number excopn, F q of n and F as the maximum d such that there is an F -free k-graph H

on n vertices with δpHq ě d. Moreover, they defined the codegree Turán density γpF q of F

as

γpF q “ lim
nÝÑ8

excopn, F q

n

and proved that this limit always exists. It is not hard to see that γpF q ď πpF q . The
codegree Turán density of a family F of k-graphs is defined analogously.

Similarly as for the Turán density, determining the exact codegree Turán density of a
given hypergraph can be very difficult and so it is only known for very few hypergraphs
(see the table in [2]).

In this work, we show that there are k-graphs with arbitrarily small but strictly positive
codegree Turán densities.

Theorem 1.1. For every ξ ą 0 and k ě 3, there is a k-graph F with 0 ă γpF q ă ξ .

Note that this is in stark contrast to the Turán density and the uniform Turán density,
another variant of the Turán density that was introduced by Erdős and Sós [6]. Regarding
the former, a classical result by Erdős [4] states that for no k-graph the Turán density is in
the interval p0, k!{kkq. Regarding the latter Reiher, Rödl, and Schacht [13] proved that for
no 3-graph the uniform Turán density is in p0, 1{27q. Mubayi and Zhao [9] defined

Γpkq :“ tγpF q : F is a k-graphu Ď r0, 1s

and
rΓpkq :“ tγpFq : F is a family of k-graphsu Ď r0, 1s .

We remark that Γpkq Ď rΓpkq and that similar sets have been studied for the classical Turán
density (see, for instance, [1, 7, 11, 14]). Mubayi and Zhao [9] showed that rΓpkq is dense
in r0, 1s and asked if this is also true for Γpkq. Their proof for rΓpkq is based on showing that
zero is an accumulation point of rΓpkq. Theorem 1.1 implies the same for Γpkq.

Corollary 1.2. Zero is an accumulation point of Γpkq.

Given a k-graph H “ pV, Eq and a subset of vertices A “ tv1, . . . , vsu Ď V , we omit
parentheses and commas and simply write A “ v1 ¨ ¨ ¨ vs. For the proof of Theorem 1.1, we
consider the following hypergraphs.

Definition 1.3. For integers ℓ ě k ě 2, we define the k-uniform zycle of length ℓ as
the k-graph Z

pkq

ℓ given by

V pZ
pkq

ℓ q “tvj
i : i P rℓs, j P rk ´ 1su, and

EpZ
pkq

ℓ q “tv1
i v2

i ¨ ¨ ¨ vk´1
i vj

i`1 : i P rℓs, j P rk ´ 1su ,

where the sum of indices is taken modulo ℓ.
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(a) Copy of Z
p3q

6 (b) Copy of Z
p4q

8

Observe that Z
pkq

ℓ has pk ´ 1qℓ vertices and pk ´ 1qℓ edges. Moreover, Z
p2q

ℓ “ Cℓ.
When k P N is clear from the context, we omit it in the notation.

The following bounds on the codegree Turán density of zycles imply Theorem 1.1.

Theorem 1.4. Let k ě 3. For every d P p0, 1s, there is an ℓ P N such that

1
2pk ´ 1qℓ

ď γpZℓq ď d .

In fact we show that γpZℓq ą 0 for every ℓ ě 3 (see Lemma 2.6).
Finally, we prove that any proper subgraph of Z

p3q

ℓ has codegree Turán density zero.
Let Z

p3q´

ℓ be the 3-graph obtained from Z
p3q

ℓ by deleting one edge.

Theorem 1.5. Let ℓ ě 3. Then γpZ
p3q´

ℓ q “ 0 .

To prove Theorem 1.5, we generalise a method developed by the authors together with
Sales in [10].

§2. Proof of Theorem 1.4

Given a k-graph H “ pV, Eq, we define the neighbourhood of x P V pk´1q as

Npxq “ tv P V : x Y tvu P Eu .

Given a pk ´ 1q-subset of vertices e P V pk´1q, we define the back neighbourhood of e and
the back degree of e, respectively, by

à
Npeq “ tf P V pk´1q : f Y tvu P E for every v P eu and à

d peq “
ˇ

ˇ

à
Npeq

ˇ

ˇ .

Moreover, given a k-graph H and two disjoint pk ´ 1q-sets of vertices e, f P V pHqpk´1q,
we write e Ź f to mean e P

à
Npfq . Thus, it is easy to see that Zℓ can be viewed as a

sequence of pk ´ 1q-sets of vertices e1, . . . , eℓ such that ei Ź ei`1 for every i P rℓs (where the
sum is taken modulo ℓ).

We split the proof in the lower and upper bound.
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2.1. Upper bound. Here we prove the following lemma that yields the upper bound in
Theorem 1.4.

Lemma 2.1. Let k ě 3. For every d P p0, 1s, there is a positive integer ℓ P N such that

γpZℓq ď d .

We will make use of the following lemma due to Mubayi and Zhao [9].

Lemma 2.2. Fix k ě 2. Given ε, α ą 0 with α ` ε ă 1, there exists an m0 P N such that
the following holds for every n-vertex k-graph H with δpHq ě pα`εqn. For every integer m

with m0 ď m ď n, the number of m-sets S Ď V pHq satisfying δpHrSsq ě pα ` ε{2qm is at
least 1

2

`

n
m

˘

.

For positive integers f, c and a k-graph F on f vertices, denote the c-blow-up of F

by F pcq. This is the f -partite k-graph F pcq “ pV, Eq with V “ V1 9Y . . . 9YVf , |Vi| “ c

for 1 ď i ď f , and E “ tvi1 ¨ ¨ ¨ vik
: vij

P Vij
for every j P rks and i1, . . . , ik P EpF qu.

By cyclically going around the vertices, it is easy to check that the blow-up of a zycle of
length r contains zycles whose length is a multiple of r.

Fact 2.3. For k, r ě 3 and c P N, we have Zcr Ď Zrpcq.

The following supersaturation result follows from a standard application of Lemma 2.2
combined with a classical result by Erdős [4].

Proposition 2.4. Let t, k, c P N with k ě 2 and let F “ tF1, . . . Ftu be a finite family
of k-graphs with |V pFiq| “ fi for all i P rts. For every ε ą 0, there exists a ζ ą 0
such that for sufficiently large n P N, the following holds. Every n-vertex k-graph H

with δpHq ě pγpFq ` εqn contains ζ
`

n
fi

˘

copies of Fi for some i P rts. Consequently, H

contains a copy of Fipcq.

Proof. Given t, k, c and ε ą 0, let m0 P N be given by Lemma 2.2, and let C P N

with C´1 ! c´1. Let m P N with m´1 ! ε, m´1
0 , C´1, f´1

i , k´1, t´1, and set

ζ “
1

2t
`

m
maxi fi

˘ .

Now let n P N be sufficiently large, i.e., n´1 ! ζ. Let H be given as in the statement of
the lemma. Due to Lemma 2.2, at least 1

2

`

n
m

˘

induced m-vertex subhypergraphs of H have
minimum codegree at least pγpFq ` ε{2qm. Since m is sufficiently large, each of those
subgraphs will contain a copy of a hypergraph in F . Therefore, there exists an i P rts such
that there are at least 1

2t

`

n
m

˘

induced m-vertex subgraphs of H containing a copy of Fi.
Set F “ Fi and f “ fi, and define an auxiliary f -uniform hypergraph GF by V pGF q “

V pHq and EpGF q “ tS P V pHqpfq : F Ď HrSsu. By the counting above, we have

|EpGF q| ě
1
2t

`

n
m

˘

`

n´f
m´f

˘ “
1

2t
`

m
f

˘

ˆ

n

f

˙

ě ζ

ˆ

n

f

˙

.
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A result by Erdős [4] implies that GF contains a copy of K
pfq

f pCq. Each edge of K
pfq

f pCq

corresponds to (at least) one embedding of F into H, in one of the at most f ! possible
ways that F could be embedded into the f vertex classes of K

pfq

f pCq (viewed as vertex
sets of H). Thus, when colouring the edges of K

pfq

f pCq accordingly, Ramsey’s theorem
entails that there is a K

pfq

f pcq Ď K
pfq

f pCq for which all embeddings of F follow the same
permutation. This yields a copy F pcq in H. □

No we are ready to prove Lemma 2.1.

Proof of Lemma 2.1. Given k ě 3 and d P p0, 1q (since for d “ 1 the statement is clear),
take t “ rd´2pk´1qs ` 1 and ℓ “ p2tq!. We first prove the following claim.

Claim 1. γpZ2, Z4, . . . , Z2tq ď d .

Proof of the claim:
Let ε ! 1{k, 1{t, 1 ´ d and pick n P N with n´1 ! ε. Let H “ pV, Eq be a k-graph on n

vertices with δpHq ě pd ` εqn. We shall prove that Z2r Ď H for some r P t1, . . . , tu. To
this end, we find a sequence of pk ´ 1q-sets of vertices e1, . . . , e2r P V pk´1q with ei Ź ei`1 for
every i P r2rs (where the sum is modulo 2r). First, we show that there is a sequence of
pairwise disjoint pk ´ 1q-sets of vertices e1, e3, . . . , e2t´1 P V pk´1q such that

ˇ

ˇNpe2i´1q
pk´1q

X
à
Npe2i`1q

ˇ

ˇ ą
1

t ´ 1

ˆ

n

k ´ 1

˙

` tpk ´ 1qnk´2 , (2.1)

for every i P rt ´ 1s.
Pick e1 arbitrarily. We choose e3, . . . , e2t´1 iteratively as follows. Suppose that for j P

rt ´ 1s, we have already found a sequence e1, . . . , e2j´1 satisfying (2.1) for every i ď j.
Let Uj “

Ť

iPrjs
e2i´1 and note that |Uj| ď pk ´ 1qt ď εn

2 . The following identity holds
by a double counting argument, and the inequality follows from the minimum codegree
condition

ÿ

ePpV ∖Uqpk´1q

|Npe2j´1q
pk´1q

X
à
Npeq| “

ÿ

ePNpe2j´1qpk´1q

ˆ

|Npeq ∖ U |

k ´ 1

˙

ě

ˆ

pd ` ε
2qn

k ´ 1

˙2

.

Therefore, by averaging there is an e2j`1 P pV ∖ Ujqpk´1q such that

ˇ

ˇNpe2j´1q
pk´1q

X
à
Npe2j`1q

ˇ

ˇ ě

`

pd` ε
2 qn

k´1

˘2

`

n
k´1

˘ ě

´

d `
ε

4

¯2pk´1q
ˆ

n

k ´ 1

˙

ě d2pk´1q

ˆ

n

k ´ 1

˙

` tpk ´ 1qnk´2

ą
1

t ´ 1

ˆ

n

k ´ 1

˙

` tpk ´ 1qnk´2 .

Hence, after t steps we found e1, e3, . . . , e2t´1 P V pk´1q satisfying (2.1) for every i P rt ´ 1s.
Note that the number of pk ´ 1q-sets containing at least one vertex in

Ť

iPrts
e2i´1 is at

most tpk ´ 1qnk´2. Thus, because of (2.1), the pigeonhole principle implies that there are
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indices i, j P rt ´ 1s with i ă j and e2i P
Ş

sPti,ju

´

Npe2s´1qpk´1q X
à
Npe2s`1q

¯

such that e2i

is disjoint from each of e1, e3, . . . , e2t´1. In particular, we have

e2i Ź e2i`1 and e2j´1 Ź e2i . (2.2)

Next we choose the other pk ´ 1q-sets with even indices in the sequence forming Z2r.
We shall choose j ´ i ´ 1 pairwise disjoint pk ´ 1q-sets e2i`2, . . . , e2j´2 P V pk´1q such
that e2m P Npe2m´1q X

à
Npe2m`1q for every i ă m ă j (note that if j “ i ` 1, we are done).

In other words, for i ă m ă j, we need

e2m´1 Ź e2m Ź e2m`1 . (2.3)

Moreover, the e2m have to be disjoint from the already chosen sets in the sequence. Each
set e P V pHqpk´1q can intersect at most pk ´ 1qnk´2 other elements of V pHqpk´1q. Thus,
we can greedily pick disjoint the even sets e2m P Npe2m´1qpk´1q X

à
Npe2m`1q one by one

for each i ă m ă j. Indeed, for every m ď j ´ i ´ 1, the number of pk ´ 1q-sets in
Npe2m´1qpk´1q X

à
Npe2m`1q which do not intersect any previously chosen pk ´ 1q-set in the

sequence is at least

|Npe2m´1q
pk´1q

X
à
Npe2m`1q| ´ 2tpk ´ 1qnk´2 (2.1)

ě
1

t ´ 1

ˆ

n

k ´ 1

˙

´ tpk ´ 1qnk´2
ą 0 .

This means that we can always pick an e2m P Npe2m´1qpk´1q X
à
Npe2m`1q that is disjoint

from all previously chosen sets.
Putting (2.2) and (2.3) together yields that the pk ´ 1q-sets e2i, e2i`1, . . . , e2j´1, form a

zycle of length 2pj ´ iq ď 2t. This concludes the proof of the claim. ■

Let 0 ă ε ! 1{ℓ, m ě ℓ{2, and n P N with n´1 ! ε. Let H be an n-vertex k-graph
with δpHq ě pd ` εqn. We shall prove that Zℓ Ď H. Notice that Proposition 2.4 and
Claim 1 imply that H contains a copy of Z2rpmq with r P t1, . . . , tu. Applying Fact 2.3
with c “ ℓ

2r
ď m, we obtain a copy of Zℓ in H as desired. □

2.2. Lower bound. The following construction will provide an example of a Zℓ-free
hypergraph with large minimum codegree.

Definition 2.5. Let n, p, k P N be such that p is a prime, k ě 2 and p | n. We define the
n-vertex k-graph Fpkq

p pnq as follows. The vertex set consists of p disjoint sets of size n
p

each,
i.e., V pFpkq

p pnqq “ V0 Ÿ . . . ŸVp´1 with |Vi| “ n
p

for all i P rps. Given a vertex v P V pFpkq
p pnqq

we write fpvq “ i if and only if v P Vi for i P t0, 1, . . . , p ´ 1u. We define the edge set
of Fpkq

p pnq by

v1 ¨ ¨ ¨ vk P EpFpkq
p pnqq ô

#

fpv1q ` ¨ ¨ ¨ ` fpvkq ” 0 mod p and fpviq ‰ 0 for some i P rks, or
fpvσp1qq “ ¨ ¨ ¨ “ fpvσpk´1qq “ 0 and fpvσpkqq “ 1 for some σ P Sk .

When k is obvious from the context, we omit it from the notation and we always consider
the indices of the clusters modulo p.
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Lemma 2.6. Let k ě 3. For every ℓ ě 2, we have 1
2pk´1qℓ ď γpZ

pkq

ℓ q.

Proof. Given k ě 3 and ℓ ě 2, let n, p P N be such that p | n, p is a prime larger than k,
and n´1 ! p´1 ă 1

pk´1qℓ`1 . Observe that by the Bertrand–Chebyshev theorem we might
take p ď 2pk ´ 1qℓ. We shall prove that

δpFppnqq “ n
p

ě
n

2pk ´ 1qℓ
and Zℓ Ę Fppnq . (2.4)

To check the codegree condition in (2.4), take a pk ´ 1q-set of vertices v1, . . . , vk´1. If there
is an i P rk ´ 1s such that fpviq ‰ 0, then let j be the only solution in t0, 1, . . . , p ´ 1u to
the equation

fpv1q ` ¨ ¨ ¨ ` fpvk´1q ` x ” 0 pmod pq .

Then, Npv1 ¨ ¨ ¨ vk´1q Ě Vj and therefore dpv1 ¨ ¨ ¨ vk´1q ě n
p
. If fpviq “ 0 for all i P rk ´ 1s,

then Npv1 ¨ ¨ ¨ vk´1q “ V1 and we obtain dpv1 ¨ ¨ ¨ vk´1q “ n
p
.

To check the second part of (2.4), assume that there are r ě 2 and sets e1, . . . , er P

V pFppnqqpk´1q forming a copy of Zr, i.e., we have ei Ź ei`1 for all i. Here, and for the rest
of the proof, we take the sum of indices of the ei’s to be modulo r. We shall prove that

r ą ℓ . (2.5)

The following claim states that there is an i0 for which ei0 is completely contained in
one of the clusters of Fppnq. Moreover, that cluster is not V0.

Claim 2. There is an i0 P rrs and a j P rp ´ 1s such that ei0 Ď Vj.

Proof of the claim: Fix any i P rrs, let ei “ v1 ¨ ¨ ¨ vk´1, and pick vk P ei`1 arbitrarily. We
consider four cases.
Case (1): |ei X V0| “ k ´ 1.

By Definition 2.5 and since v1 ¨ ¨ ¨ vk P EpFppnqq, we have vk P V1. Since we
picked vk P ei`1 arbitrarily, we have that ei`1 Ď V1 and finish the proof of this
case by taking i0 “ i ` 1.

Case (2): |ei X V0| ă k ´ 2.
Let j ” ´pfpv1q ` ¨ ¨ ¨ ` fpvk´1qq mod p. By Definition 2.5 and since v1 ¨ ¨ ¨ vk P

EpFppnqq, we have

0 ” fpv1q ` ¨ ¨ ¨ ` fpvkq ” fpvkq ´ j .

This means that vk P Vj and since we picked vk P ei`1 arbitrarily, similarly as
above we get ei`1 Ď Vj. If j ı 0, we finish by taking i0 “ i ` 1. If j ” 0, the
claim follows from Case (1) for ei`1 instead of ei.

Case (3): |ei X V0| “ k ´ 2 and |ei X V1| “ 0.
This case follows from similar arguments as the previous one.
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Case (4): |ei X V0| “ k ´ 2 and |ei X V1| “ 1.
By Definition 2.5, we either have vk P V0 or vk P Vp´1. Thus, since we

picked vk P ei`1 arbitrarily, we certainly have ei`1 Ď V0 Y Vp´1. Hence, |ei`1 X

V1| “ 0 and so the proof follows from Cases (1) - (3) for ei`1 instead of ei.
■

We now show that for every i P rrs,

if ei Ď Vj with j ı 0 mod p, then ei`1 Ď Vp1´kqj . (2.6)

Indeed, let ei “ v1 ¨ ¨ ¨ vk´1 Ď Vj and pick vk P ei`1 arbitrarily. Since fpviq ” j mod p

for i P rk ´ 1s, we have

fpv1q ` ¨ ¨ ¨ ` fpvk´1q ” pk ´ 1qj pmod pq .

Therefore, since ei Ź ei`1 implies v1 ¨ ¨ ¨ vk P EpFppnqq and because fpviq ” j ı 0 mod p

for i P rk ´ 1s, we have

0 ” fpv1q ` ¨ ¨ ¨ ` fpvkq ” pk ´ 1qj ` fpvkq pmod pq .

Hence fpvkq ” p1 ´ kqj, meaning that vk P Vp1´kqj . Since we picked vk P ei`1 arbitrarily, we
have ei`1 Ď Vp1´kqj proving (2.6).

Finally, we are ready to show (2.5). Let i0 and j be given by Claim 2. As p is a prime, Fp

is a field. Together with j ı 0, this entails that p1 ´ kqsj ı 0 pmod pq for all s P rrs.
Thus, r applications of (2.6) imply that

ei0`r Ď Vm with m ” p1 ´ kq
rj pmod pq .

Since ei0`r “ ei0 P Vj, we have p1 ´ kqrj ” j pmod pq, and as j ı 0, we have p1 ´ kqr ” 1.
Recalling that we chose p such that p ą pk ´ 1qℓ ` 1, (2.5) follows. □

§3. Proof of Theorem 1.5

3.1. Method. As mentioned in the introduction, to prove Theorem 1.5 we apply the
method developed by the authors together with Sales in [10].

Definition 3.1. Given a k-graph H “ pV, Eq, a picture is a tuple pv, m, L, Bq, where
(i ) v P V ,

(ii ) m P N,
(iii ) L is a collection of m-tuples L Ď pV ∖ tvuqm, and
(iv ) B Ď rmspk´1q is a fixed family of pk ´ 1q-subsets of V pHq,

such that for every px1, . . . , xmq P L and every i1 ¨ ¨ ¨ ik´1 P B, the k-sets vxi1 ¨ ¨ ¨ xik´1 are
edges of H. That is to say, xi1 ¨ ¨ ¨ xik´1 is an edge in the link of H at v.

We use pictures to find a copy of a k-graph F on H. Roughly speaking, we say that
a picture is nice if it ‘encodes’ a set of edges that would yield a copy of F , but whose
existence we cannot (yet) guarantee when considering the link of H at v.
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Definition 3.2. Given k-graphs F and H “ pV, Eq, and vertex set S Ď V , we say that
a picture pv, m, L, Bq is S-nice for F , if for every w P S and every px1, . . . , xmq P L, the
hypergraph with vertex set V and edge set

E Y twxi1 ¨ ¨ ¨ xik´1 : i1 ¨ ¨ ¨ ik´1 P Bu

contains a copy of F .

If F is clear from the context, we speak simply of S-nice pictures. The following lemma
describes how the existence of S-nice pictures implies that H contains a copy of F .

Lemma 3.3. Let F be a k-graph. Given ξ, ζ ą 0 and c, m P N, let n P N such that n´1 !

ξ, ζ, |V pF q|´1, c´1, m´1, and let H be an n-vertex k-graph.
Suppose that there are m P N and B Ď rmspk´1q such that for every S Ď V pHq with |S| ě

c, there is an S 1-nice picture pv, m, L, Bq, with v P S, S 1 Ď S, |S 1| ě ξ|S|, and |L| ě ζnm.
Then H contains a copy of F .

Proof. Let t “ rζ´1s ` 1. By iteratively applying the conditions of the lemma, we find
a nested sequence of subsets V pHq “ S0 Ě S1 Ě ¨ ¨ ¨ Ě St such that for i P rts, there are
Si-nice pictures pvi, m, Li, Bq satisfying vi P Si´1, |Si| ě ξin ą c, and |Li| ě ζnm.

Since t ě ζ´1 ` 1, by the pigeonhole principle, there are two indices 0 ă i ă j ď t such
that Li X Lj ‰ ∅. Let px1, . . . , xmq P Li X Lj. Then because pvi, m, Li, Bq is an Si-nice
picture and vj P Sj´1 Ď Si, Definition 3.2 guarantees that

EpHq Y tvjxi1 ¨ ¨ ¨ xik´1 : i1 ¨ ¨ ¨ ik´1 P Bu

contains a copy of F . Since pvj, m, Lj, Bq is a picture, Definition 3.1 yields vjxi1 ¨ ¨ ¨ xik´1 P

EpHq for all i1 ¨ ¨ ¨ ik´1 P B. Thus, we conclude that this copy of F is in fact in H. □

Now we apply Lemma 3.3 to prove Theorem 1.5.

3.2. Proof of Theorem 1.5. Let ℓ ě 3 be an integer and let ε ą 0. Let ξ, ζ ą 0,
and let n, c P N such that n´1 ! c´1 ! ζ, ξ ! ε. Let H be a 3-graph with δpHq ě εn.
We aim to show that Z´

ℓ Ď H. Set m “ 2 and B “
␣

t1, 2u
(

, then due to Lemma 3.3,
we only need to prove that for every S Ď V pHq of size at least c, there is an S 1-nice
picture pv, 2, L,

␣

t1, 2u
(

q with v P S, S 1 Ď S, |S 1| ě ξ|S|, and |L| ě ζn2.
Given S Ď V pHq with |S| ě c, take any vertex v P S and let V “ V pHq ∖ tvu. Observe

that using the minimum codegree condition and the above hierarchy, we have
ÿ

bb1PV p2q

|NLv pbq X NLv pb1
q X S| “

ÿ

uPS∖tvu

ˆ

dLv puq

2

˙

ě

ˆ

εn

2

˙

p|S| ´ 1q ě ξ

ˆ

n

2

˙

|S| , (3.1)

where Lv denotes the link of H at v. Thus, by averaging there is a pair b1, b2 P V such that
|NLv pb1q X NLv pb2q X S| ě ξ|S|. We pick S 1 Ď NLv pb1q X NLv pb2q X S with |S 1| “ rξ|S|s.

Since δpHq ´ 2ℓ ´ |S 1| ě εn{2 ě 2 we can greedily pick pairwise disjoint pairs of
vertices e1, . . . , eℓ´2 P pV pHq ∖ S 1qp2q such that

b1b2 “ e1 Ź e2 Ź ¨ ¨ ¨ Ź eℓ´2 . (3.2)
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Now let R “
Ť

iPrℓ´2s
ei and take

L “ tpx1, x2q P V 2 : x1 P NHpeℓ´2q ∖ R and x2 P NHpx1vq ∖ Ru .

Note that |L| ě pδpHq{2q2 ě ε2n2{4 ě ζn2. Further, since x1x2 P EpLvq for every px1, x2q P

L, pv, m, L, Bq is a picture in H. Moreover, observe that it is S 1-nice. Indeed, we only we
need to check that for any u P S 1 and px1, x2q P L, the hypergraph with edges EpHq Y

tux1x2u contains a copy of Z´
ℓ . For this, note that in EpHq Y tux1x2u we have x1x2 Ź uv.

Further, u P S 1 and the choice of b1 and b2 imply uv Ź b1b2. Together with (3.2), this
gives x1x2 Ź uv Ź e1 Ź ¨ ¨ ¨ Ź eℓ´2, and using the fact that x1 P Npeℓ´2q, we obtain a copy
of Z´

ℓ (where the missing edge is x2eℓ´2).

§4. Concluding Remarks

Following a very similar proof as that for Theorem 1.5, we can show a general upper
bound for γpZ

p3q

ℓ q for every ℓ ě 3.

Proposition 4.1. For ℓ ě 3, γpZ
p3q

ℓ q ď 1{2.

Proof. Given ℓ ě 3 and ε ą 0, let ξ, ζ ą 0 and n, c P N such that n´1 ! c´1 ! ζ, ξ ! ε.
Let H be a 3-graph with δpHq ě

`1
2 ` ε

˘

n. We aim to show that Zℓ Ď H. As in the proof
of Theorem 1.5, we pick m “ 2 and B “

␣

t1, 2u
(

and due to Lemma 3.3, we only need to
prove that for every S Ď V pHq of size at least c, there is an S 1-nice picture pv, 2, L,

␣

t1, 2u
(

q

with v P S, S 1 Ď S, |S 1| ě ξ|S|, and |L| ě ζn2.
For the first part of the proof we proceed as in the proof of Theorem 1.5 and we only

use δpHq ě εn. In particular, we obtain two vertices b1, b2 P V pHq ∖ tvu “: V and a
set S 1 Ď NLv pb1qXNLv pb1qXS with |S 1| “ rξ|S|s. Moreover, we again greedily pick pairwise
disjoint pairs of vertices e1, . . . , eℓ´2 P pV ∖ S 1qp2q satisfying (3.2). The set L is chosen
differently. Set R “

Ť

iPrℓ´2s
ei and

L “ tpx1, x2q P V 2 : x1, x2 P Npeℓ´2q ∖ R and x1x2 P EpLvqu . (4.1)

Observe that given x1 P Npeℓ´2q ∖ R, any vertex x2 P pNpxvq X Npeℓ´2qq ∖ R, gives rise
to px1, x2q P L. Furthermore, since δpHq ě p1{2 ` εqn,

|pNpxvq X Npeℓ´2qq ∖ R| ě εn ´ 2ℓ ě
ε

2n ,

and similarly we have Npeℓ´2q ∖ R ě n{2. Therefore, we obtain |L| ě εn2{4, and
since x1x2 P EpLvq for all px1, x2q P L, pv, m, L, Bq is a picture in H.

To see that the tuple pv, m, L, Bq is indeed an S 1-nice picture, we shall prove that for
every u P S 1 and px1, x2q P L, the hypergraph with (vertex set V pHq and) edges EpHq Y

tux1x2u contains a copy of Zℓ. Indeed, the definition of L implies x1x2v P EpHq and
therefore x1x2 Ź uv in EpHq Y tux1x2u. Also due to the definition of L, we have x, y P

Npeℓ´2q and thus, eℓ´2 Źxy. Moreover, u P S 1 and the choice of b1 and b2 entails uvŹb1b2 “

e1. Combining this with (3.2), we obtain uv Ź e1 Ź . . . eℓ´2 Ź x1x2 Ź uv, that is a copy
of Zℓ, in EpHq Y tux1x2u. □
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It would be interesting to know whether Proposition 4.1 is sharp for some ℓ ě 3. The
following construction gives a lower bound of 1{3 for the codegree Turán density of any
zycle of length not divisible by 3. Let n P N be divisible by 3 and let H “ pV, Eq,
where V “ V1 Ÿ V2 Ÿ V3 with |Vi| “ n{3 and E “ tuvw P V p3q : u, v P Vi and w P Vi`1u,
where the sum is taken modulo 3. It is not hard to check that δpHq ě n{3 and that Zℓ Ę H

for every ℓ not divisible by 3.
Observe that Z

p3q

2 “ K
p3q

4 . For this 3-graph, a well-known conjecture by Czygrinow and
Nagle [3] states that γpZ

p3q

2 q “ γpK
p3q

4 q “ 1{2. Regarding the next case, Z
p3q

3 , note that its
codegree Turán density is not bounded by the previous construction. The following 3-graph
entails γpZ

p3q

3 q ě 1{4, and in fact it provides the same lower bound for every Z
p3q

ℓ with ℓ not
divisible by 4. Let n P N divisible by 4 and let H “ pV, Eq, where V “ V1 Ÿ V2 Ÿ V3 Ÿ V4

with |Vi| “ n{4. Define the edges of H as

E “ txyz : x, y P Vi and z P Vi`1u Ÿ txyz : x P V1, y P V2, z P V3 Y V4u ,

where the sum of indices is taken modulo 4. Clearly, δpHq ě n{4. To see that Zℓ Ę H

for ℓ not divisible by 4, it can be checked that all zycles are of the form e1 Ź ¨ ¨ ¨ Ź er such
that ei Ď Vji

for some ji P r4s. Together with Proposition 4.1, this yields
1
4 ď γpZ

p3q

3 q ď
1
2 .

Problem 4.2. Determine the value of γpZ
p3q

3 q.

On a different note, recall that Theorem 1.5 states that Z
p3q

ℓ is (inclusion) minimal with
respect to the property of having strictly positive codegree Turán density. It would be
interesting to know if this also holds for larger uniformities.

Question 4.3. For k ą 3 and sufficiently large ℓ, what are the minimal subgraphs F Ď Z
pkq

ℓ

with γpF q ą 0 ?

In order to prove that the lower bound of Lemma 2.6 in Subsection 2.2, we introduce
the k-graphs Fpkq

p pnq that have large minimum codegree and are Z
pkq

ℓ -free for small ℓ. It
would be interesting to study the codegree Turán density of Fpkq

p pnq itself. Observe however,
that for n ě pk we have K

pkq´

k`1 Ď Fpkq
p pnq, which suggests that this problem might be very

difficult for general n.
It is perhaps more natural to study the codegree Turán density of the following k-graph.

For p ą k, let rFpkq
p be the k-graph on ppk ´ 1q vertices with V prFpkq

p q “ V1 Ÿ . . . Ÿ Vp

where |Vi| “ k ´ 1 for every i P rps and whose edges are given by

v1 ¨ ¨ ¨ vk P EprFpkq
p q ðñ fpv1q ` ¨ ¨ ¨ ` fpvkq ” 0 mod p ,

where the function f : V prFpkq
p q ÝÑ rps is analogous as in Definition 2.5.

Problem 4.4. For k ě 3, determine the codegree Turán density of rFpkq
p .
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Consider the indices of the clusters V1, . . . , Vp of rFpkq
p to be modulo p. Observe for j P rps,

we have Vj Y tvu P EprFpkq
p q for every v P Vp1´kqj. It follows that

V1 Ź V1´k Ź ¨ ¨ ¨ Ź Vp1´kqp´2 Ź Vp1´kqp´1 “ V1 ,

where the last identity is given by Fermat’s little theorem. Hence, there is an ℓ ď p ´ 1
such that Zℓ Ď rFpkq

p and therefore, Lemma 2.6 yields γprFpkq
p q ě 1

2pk´1qp ą 0.

Question 4.5. For k ě 3, is it true that lim
pÝÑ8

γprFpkq
p q “ 0 ?
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[2] J. Balogh, F. Chr. Clemen, and B. Lidickỳ. “Hypergraph Turán Problems in ℓ2-Norm”. arXiv:2108.10406
(2021) (Ò 1, 2).

[3] A. Czygrinow and B. Nagle. “A note on codegree problems for hypergraphs”. Bull. Inst. Combin.
Appl 32 (2001), 63–69 (Ò 11).

[4] P. Erdős. “On extremal problems of graphs and generalized graphs”. Israel J. Math. 2.3 (1964),
183–190 (Ò 2, 4, 5).

[5] P. Erdős. “Paul Turán, 1910–1976: his work in graph theory”. J. Graph Theory 1.2 (1977), 97–101
(Ò 1).

[6] P. Erdős and V.T. Sós. “On Ramsey–Turán type theorems for hypergraphs”. Combinatorica 2 (1982),
289–295 (Ò 1, 2).

[7] P. Frankl and V. Rödl. “Hypergraphs do not jump”. Combinatorica 4.2-3 (1984), 149–159 (Ò 2).
[8] P. Keevash. “Hypergraph Turán problems”. Surveys in combinatorics 392 (2011), 83–140 (Ò 1).
[9] D. Mubayi and Y. Zhao. “Co-degree density of hypergraphs”. J. Combin. Theory Ser. A 114.6 (2007),

1118–1132 (Ò 2, 4).
[10] S. Piga, M. Sales, and B. Schülke. “The codegree Turán density of tight cycles minus one edge”.

Combin. Probab. Comput. (2023), 1–4 (Ò 3, 8).
[11] O. Pikhurko. “On possible Turán densities”. Israel J. Math. 201.1 (2014), 415–454 (Ò 2).
[12] Chr. Reiher. “Extremal problems in uniformly dense hypergraphs”. European J. Combin. 88 (2020),

103117 (Ò 1).
[13] Chr. Reiher, V. Rödl, and M. Schacht. “Hypergraphs with vanishing Turán density in uniformly

dense hypergraphs”. J. London Math. Soc. 97.1 (2018), 77–97 (Ò 2).
[14] M. Schacht. “Restricted problems in extremal combinatorics”. Proceedings of the ICM 2022 (To

appear) (Ò 2).
[15] P. Turán. “On an extremal problem in graph theory”. Mat. Fiz. Lapok 48 (1941), 436–452 (Ò 1).

(S. Piga) School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15
2TT, UK

Email address: s.piga@bham.ac.uk

(B. Schülke) Mathematics Department, California Institute of Technology, USA
Email address: schuelke@caltech.edu


	1. Introduction
	2. Proof of Theorem 1.4
	2.1. Upper bound
	2.2. Lower bound

	3. Proof of Theorem 1.5
	3.1. Method
	3.2. Proof of Theorem 1.5

	4. Concluding Remarks
	References

