HYPERGRAPHS WITH ARBITRARILY SMALL CODEGREE TURÁN DENSITY

SIMÓN PIGA AND BJARNE SCHÜLKE

Abstract

Let $k \geqslant 3$. Given a k-uniform hypergraph H, the minimum codegree $\delta(H)$ is the largest $d \in \mathbb{N}$ such that every $(k-1)$-set of $V(H)$ is contained in at least d edges. Given a k-uniform hypergraph F, the codegree Turán density $\gamma(F)$ of F is the smallest $\gamma \in[0,1]$ such that every k-uniform hypergraph on n vertices with $\delta(H) \geqslant(\gamma+o(1)) n$ contains a copy of F. Similarly as other variants of the hypergraph Turán problem, determining the codegree Turán density of a hypergraph is in general notoriously difficult and only few results are known.

In this work, we show that for every $\varepsilon>0$, there is a k-uniform hypergraph F with $0<\gamma(F)<\varepsilon$. This is in contrast to the classical Turán density, which cannot take any value in the interval $\left(0, k!/ k^{k}\right)$ due to a fundamental result by Erdős.

§1. Introduction

A k-uniform hypergraph (or k-graph) H consists of a vertex set $V(H)$ together with a set of edges $E(H) \subseteq V(H)^{(k)}=\{S \subseteq V(H):|S|=k\}$. Given a k-graph F and $n \in \mathbb{N}$, the Turán number of n and F, ex (n, F), is the maximum number of edges an n-vertex k-graph can have without containing a copy of F. Since the main interest lies in the asymptotics, the Turán density $\pi(F)$ of a k-graph F is defined as

$$
\pi(F)=\lim _{n \longrightarrow \infty} \frac{\operatorname{ex}(n, F)}{\binom{n}{k}}
$$

Determining the value of $\pi(F)$ for k-graphs (with $k \geqslant 3$) is one of the central open problems in combinatorics. In particular, the problem of determining the Turán density of the complete 3-graph on four vertices, i.e., $\pi\left(K_{4}^{(3)}\right)$, was asked by Turán in 1941 [15] and Erdős [5] offered 1000\$ for its resolution. Despite receiving a lot of attention (see for instance the survey by Keevash [8]), this problem, and even the seemingly simpler problem of determining $\pi\left(K_{4}^{(3)-}\right)$, where $K_{4}^{(3)-}$ is the $K_{4}^{(3)}$ minus one edge, remain open.

Several variations of this type of problem have been considered, see for instance [2, 6, 12] and the references therein. The variant that we are concerned with here asks how large the minimum codegree of an F-free k-graph can be. Given a k-graph $H=(V, E)$ and $S \subseteq V$, the degree $d(S)$ of S (in H) is the number of edges containing S, i.e., $d(S)=|\{e \in E: S \subseteq e\}|$. The minimum codegree of H is defined as $\delta(H)=\min _{x \in V^{(k-1)}} d(x)$.

[^0]Given a k-graph F and $n \in \mathbb{N}$, Mubayi and Zhao [9] introduced the codegree Turán number $\mathrm{ex}_{\mathrm{co}}(n, F)$ of n and F as the maximum d such that there is an F-free k-graph H on n vertices with $\delta(H) \geqslant d$. Moreover, they defined the codegree Turán density $\gamma(F)$ of F as

$$
\gamma(F)=\lim _{n \longrightarrow \infty} \frac{e x_{\mathrm{co}}(n, F)}{n}
$$

and proved that this limit always exists. It is not hard to see that $\gamma(F) \leqslant \pi(F)$. The codegree Turán density of a family \mathcal{F} of k-graphs is defined analogously.

Similarly as for the Turán density, determining the exact codegree Turán density of a given hypergraph can be very difficult and so it is only known for very few hypergraphs (see the table in [2]).

In this work, we show that there are k-graphs with arbitrarily small but strictly positive codegree Turán densities.

Theorem 1.1. For every $\xi>0$ and $k \geqslant 3$, there is a k-graph F with $0<\gamma(F)<\xi$.
Note that this is in stark contrast to the Turán density and the uniform Turán density, another variant of the Turán density that was introduced by Erdős and Sós [6]. Regarding the former, a classical result by Erdős [4] states that for no k-graph the Turán density is in the interval ($0, k!/ k^{k}$). Regarding the latter Reiher, Rödl, and Schacht [13] proved that for no 3 -graph the uniform Turán density is in $(0,1 / 27)$. Mubayi and Zhao [9] defined

$$
\Gamma^{(k)}:=\{\gamma(F): F \text { is a } k \text {-graph }\} \subseteq[0,1]
$$

and

$$
\widetilde{\Gamma}^{(k)}:=\{\gamma(\mathcal{F}): \mathcal{F} \text { is a family of } k \text {-graphs }\} \subseteq[0,1]
$$

We remark that $\Gamma^{(k)} \subseteq \widetilde{\Gamma}^{(k)}$ and that similar sets have been studied for the classical Turán density (see, for instance, $[1,7,11,14]$). Mubayi and Zhao [9] showed that $\widetilde{\Gamma}^{(k)}$ is dense in $[0,1]$ and asked if this is also true for $\Gamma^{(k)}$. Their proof for $\widetilde{\Gamma}^{(k)}$ is based on showing that zero is an accumulation point of $\widetilde{\Gamma}^{(k)}$. Theorem 1.1 implies the same for $\Gamma^{(k)}$.

Corollary 1.2. Zero is an accumulation point of $\Gamma^{(k)}$.
Given a k-graph $H=(V, E)$ and a subset of vertices $A=\left\{v_{1}, \ldots, v_{s}\right\} \subseteq V$, we omit parentheses and commas and simply write $A=v_{1} \cdots v_{s}$. For the proof of Theorem 1.1, we consider the following hypergraphs.

Definition 1.3. For integers $\ell \geqslant k \geqslant 2$, we define the k-uniform zycle of length ℓ as the k-graph $Z_{\ell}^{(k)}$ given by

$$
\begin{aligned}
& V\left(Z_{\ell}^{(k)}\right)=\left\{v_{i}^{j}: i \in[\ell], j \in[k-1]\right\}, \text { and } \\
& E\left(Z_{\ell}^{(k)}\right)=\left\{v_{i}^{1} v_{i}^{2} \cdots v_{i}^{k-1} v_{i+1}^{j}: i \in[\ell], j \in[k-1]\right\},
\end{aligned}
$$

where the sum of indices is taken modulo ℓ.

(A) Copy of $Z_{6}^{(3)}$

(B) Copy of $Z_{8}^{(4)}$

Observe that $Z_{\ell}^{(k)}$ has $(k-1) \ell$ vertices and $(k-1) \ell$ edges. Moreover, $Z_{\ell}^{(2)}=C_{\ell}$. When $k \in \mathbb{N}$ is clear from the context, we omit it in the notation.

The following bounds on the codegree Turán density of zycles imply Theorem 1.1.
Theorem 1.4. Let $k \geqslant 3$. For every $d \in(0,1]$, there is an $\ell \in \mathbb{N}$ such that

$$
\frac{1}{2(k-1)^{\ell}} \leqslant \gamma\left(Z_{\ell}\right) \leqslant d
$$

In fact we show that $\gamma\left(Z_{\ell}\right)>0$ for every $\ell \geqslant 3$ (see Lemma 2.6).
Finally, we prove that any proper subgraph of $Z_{\ell}^{(3)}$ has codegree Turán density zero. Let $Z_{\ell}^{(3)-}$ be the 3 -graph obtained from $Z_{\ell}^{(3)}$ by deleting one edge.

Theorem 1.5. Let $\ell \geqslant 3$. Then $\gamma\left(Z_{\ell}^{(3)-}\right)=0$.
To prove Theorem 1.5, we generalise a method developed by the authors together with Sales in [10].

§2. Proof of Theorem 1.4

Given a k-graph $H=(V, E)$, we define the neighbourhood of $x \in V^{(k-1)}$ as

$$
N(x)=\{v \in V: x \cup\{v\} \in E\} .
$$

Given a $(k-1)$-subset of vertices $e \in V^{(k-1)}$, we define the back neighbourhood of e and the back degree of e, respectively, by

$$
\overleftarrow{N}(e)=\left\{f \in V^{(k-1)}: f \cup\{v\} \in E \text { for every } v \in e\right\} \quad \text { and } \quad \overleftarrow{d}(e)=|\overleftarrow{N}(e)|
$$

Moreover, given a k-graph H and two disjoint $(k-1)$-sets of vertices $e, f \in V(H)^{(k-1)}$, we write $e \triangleright f$ to mean $e \in \overleftarrow{N}(f)$. Thus, it is easy to see that Z_{ℓ} can be viewed as a sequence of $(k-1)$-sets of vertices e_{1}, \ldots, e_{ℓ} such that $e_{i} \triangleright e_{i+1}$ for every $i \in[\ell]$ (where the sum is taken modulo ℓ).

We split the proof in the lower and upper bound.
2.1. Upper bound. Here we prove the following lemma that yields the upper bound in Theorem 1.4.

Lemma 2.1. Let $k \geqslant 3$. For every $d \in(0,1]$, there is a positive integer $\ell \in \mathbb{N}$ such that

$$
\gamma\left(Z_{\ell}\right) \leqslant d
$$

We will make use of the following lemma due to Mubayi and Zhao [9].
Lemma 2.2. Fix $k \geqslant 2$. Given $\varepsilon, \alpha>0$ with $\alpha+\varepsilon<1$, there exists an $m_{0} \in \mathbb{N}$ such that the following holds for every n-vertex k-graph H with $\delta(H) \geqslant(\alpha+\varepsilon) n$. For every integer m with $m_{0} \leqslant m \leqslant n$, the number of m-sets $S \subseteq V(H)$ satisfying $\delta(H[S]) \geqslant(\alpha+\varepsilon / 2) m$ is at least $\frac{1}{2}\binom{n}{m}$.

For positive integers f, c and a k-graph F on f vertices, denote the c-blow-up of F by $F(c)$. This is the f-partite k-graph $F(c)=(V, E)$ with $V=V_{1} \dot{\cup} \ldots \dot{\cup} V_{f},\left|V_{i}\right|=c$ for $1 \leqslant i \leqslant f$, and $E=\left\{v_{i_{1}} \cdots v_{i_{k}}: v_{i_{j}} \in V_{i_{j}}\right.$ for every $j \in[k]$ and $\left.i_{1}, \ldots, i_{k} \in E(F)\right\}$.

By cyclically going around the vertices, it is easy to check that the blow-up of a zycle of length r contains zycles whose length is a multiple of r.

Fact 2.3. For $k, r \geqslant 3$ and $c \in \mathbb{N}$, we have $Z_{c r} \subseteq Z_{r}(c)$.
The following supersaturation result follows from a standard application of Lemma 2.2 combined with a classical result by Erdős [4].

Proposition 2.4. Let $t, k, c \in \mathbb{N}$ with $k \geqslant 2$ and let $\mathcal{F}=\left\{F_{1}, \ldots F_{t}\right\}$ be a finite family of k-graphs with $\left|V\left(F_{i}\right)\right|=f_{i}$ for all $i \in[t]$. For every $\varepsilon>0$, there exists a $\zeta>0$ such that for sufficiently large $n \in \mathbb{N}$, the following holds. Every n-vertex k-graph H with $\delta(H) \geqslant(\gamma(\mathcal{F})+\varepsilon) n$ contains $\zeta\binom{n}{f_{i}}$ copies of F_{i} for some $i \in[t]$. Consequently, H contains a copy of $F_{i}(c)$.

Proof. Given t, k, c and $\varepsilon>0$, let $m_{0} \in \mathbb{N}$ be given by Lemma 2.2, and let $C \in \mathbb{N}$ with $C^{-1} \ll c^{-1}$. Let $m \in \mathbb{N}$ with $m^{-1} \ll \varepsilon, m_{0}^{-1}, C^{-1}, f_{i}^{-1}, k^{-1}, t^{-1}$, and set

$$
\zeta=\frac{1}{2 t\binom{m}{\max _{i} f_{i}}} .
$$

Now let $n \in \mathbb{N}$ be sufficiently large, i.e., $n^{-1} \ll \zeta$. Let H be given as in the statement of the lemma. Due to Lemma 2.2, at least $\frac{1}{2}\binom{n}{m}$ induced m-vertex subhypergraphs of H have minimum codegree at least $(\gamma(\mathcal{F})+\varepsilon / 2) m$. Since m is sufficiently large, each of those subgraphs will contain a copy of a hypergraph in \mathcal{F}. Therefore, there exists an $i \in[t]$ such that there are at least $\frac{1}{2 t}\binom{n}{m}$ induced m-vertex subgraphs of H containing a copy of F_{i}.

Set $F=F_{i}$ and $f=f_{i}$, and define an auxiliary f-uniform hypergraph G_{F} by $V\left(G_{F}\right)=$ $V(H)$ and $E\left(G_{F}\right)=\left\{S \in V(H)^{(f)}: F \subseteq H[S]\right\}$. By the counting above, we have

$$
\left|E\left(G_{F}\right)\right| \geqslant \frac{1}{2 t} \frac{\binom{n}{m}}{\binom{n-f}{m-f}}=\frac{1}{2 t\binom{m}{f}}\binom{n}{f} \geqslant \zeta\binom{n}{f} .
$$

A result by Erdős [4] implies that G_{F} contains a copy of $K_{f}^{(f)}(C)$. Each edge of $K_{f}^{(f)}(C)$ corresponds to (at least) one embedding of F into H, in one of the at most f ! possible ways that F could be embedded into the f vertex classes of $K_{f}^{(f)}(C)$ (viewed as vertex sets of H). Thus, when colouring the edges of $K_{f}^{(f)}(C)$ accordingly, Ramsey's theorem entails that there is a $K_{f}^{(f)}(c) \subseteq K_{f}^{(f)}(C)$ for which all embeddings of F follow the same permutation. This yields a copy $F(c)$ in H.

No we are ready to prove Lemma 2.1.
Proof of Lemma 2.1. Given $k \geqslant 3$ and $d \in(0,1)$ (since for $d=1$ the statement is clear), take $t=\left\lceil d^{-2(k-1)}\right\rceil+1$ and $\ell=(2 t)!$. We first prove the following claim.

Claim 1. $\gamma\left(Z_{2}, Z_{4}, \ldots, Z_{2 t}\right) \leqslant d$.
Proof of the claim:
Let $\varepsilon \ll 1 / k, 1 / t, 1-d$ and pick $n \in \mathbb{N}$ with $n^{-1} \ll \varepsilon$. Let $H=(V, E)$ be a k-graph on n vertices with $\delta(H) \geqslant(d+\varepsilon) n$. We shall prove that $Z_{2 r} \subseteq H$ for some $r \in\{1, \ldots, t\}$. To this end, we find a sequence of $(k-1)$-sets of vertices $e_{1}, \ldots, e_{2 r} \in V^{(k-1)}$ with $e_{i} \triangleright e_{i+1}$ for every $i \in[2 r]$ (where the sum is modulo $2 r$). First, we show that there is a sequence of pairwise disjoint $(k-1)$-sets of vertices $e_{1}, e_{3}, \ldots, e_{2 t-1} \in V^{(k-1)}$ such that

$$
\begin{equation*}
\left|N\left(e_{2 i-1}\right)^{(k-1)} \cap \overleftarrow{N}\left(e_{2 i+1}\right)\right|>\frac{1}{t-1}\binom{n}{k-1}+t(k-1) n^{k-2} \tag{2.1}
\end{equation*}
$$

for every $i \in[t-1]$.
Pick e_{1} arbitrarily. We choose $e_{3}, \ldots, e_{2 t-1}$ iteratively as follows. Suppose that for $j \in$ [$t-1$], we have already found a sequence $e_{1}, \ldots, e_{2 j-1}$ satisfying (2.1) for every $i \leqslant j$. Let $U_{j}=\bigcup_{i \in[j]} e_{2 i-1}$ and note that $\left|U_{j}\right| \leqslant(k-1) t \leqslant \frac{\varepsilon n}{2}$. The following identity holds by a double counting argument, and the inequality follows from the minimum codegree condition

$$
\sum_{e \in(V \backslash U)^{(k-1)}}\left|N\left(e_{2 j-1}\right)^{(k-1)} \cap \overleftarrow{N}(e)\right|=\sum_{e \in N\left(e_{2 j-1}\right)^{(k-1)}}\binom{|N(e) \backslash U|}{k-1} \geqslant\binom{\left(d+\frac{\varepsilon}{2}\right) n}{k-1}^{2} .
$$

Therefore, by averaging there is an $e_{2 j+1} \in\left(V \backslash U_{j}\right)^{(k-1)}$ such that

$$
\begin{aligned}
\left|N\left(e_{2 j-1}\right)^{(k-1)} \cap \overleftarrow{N}\left(e_{2 j+1}\right)\right| \geqslant \frac{\binom{\left(d+\frac{\varepsilon}{2}\right) n}{k-1}^{2}}{\binom{n}{k-1}} & \geqslant\left(d+\frac{\varepsilon}{4}\right)^{2(k-1)}\binom{n}{k-1} \\
& \geqslant d^{2(k-1)}\binom{n}{k-1}+t(k-1) n^{k-2} \\
& >\frac{1}{t-1}\binom{n}{k-1}+t(k-1) n^{k-2}
\end{aligned}
$$

Hence, after t steps we found $e_{1}, e_{3}, \ldots, e_{2 t-1} \in V^{(k-1)}$ satisfying (2.1) for every $i \in[t-1]$.
Note that the number of $(k-1)$-sets containing at least one vertex in $\bigcup_{i \in[t]} e_{2 i-1}$ is at most $t(k-1) n^{k-2}$. Thus, because of (2.1), the pigeonhole principle implies that there are
indices $i, j \in[t-1]$ with $i<j$ and $e_{2 i} \in \bigcap_{s \in\{i, j\}}\left(N\left(e_{2 s-1}\right)^{(k-1)} \cap \overleftarrow{N}\left(e_{2 s+1}\right)\right)$ such that $e_{2 i}$ is disjoint from each of $e_{1}, e_{3}, \ldots, e_{2 t-1}$. In particular, we have

$$
\begin{equation*}
e_{2 i} \triangleright e_{2 i+1} \quad \text { and } \quad e_{2 j-1} \triangleright e_{2 i} . \tag{2.2}
\end{equation*}
$$

Next we choose the other $(k-1)$-sets with even indices in the sequence forming $Z_{2 r}$. We shall choose $j-i-1$ pairwise disjoint $(k-1)$-sets $e_{2 i+2}, \ldots, e_{2 j-2} \in V^{(k-1)}$ such that $e_{2 m} \in N\left(e_{2 m-1}\right) \cap \overleftarrow{N}\left(e_{2 m+1}\right)$ for every $i<m<j$ (note that if $j=i+1$, we are done). In other words, for $i<m<j$, we need

$$
\begin{equation*}
e_{2 m-1} \triangleright e_{2 m} \triangleright e_{2 m+1} \tag{2.3}
\end{equation*}
$$

Moreover, the $e_{2 m}$ have to be disjoint from the already chosen sets in the sequence. Each set $e \in V(H)^{(k-1)}$ can intersect at most $(k-1) n^{k-2}$ other elements of $V(H)^{(k-1)}$. Thus, we can greedily pick disjoint the even sets $e_{2 m} \in N\left(e_{2 m-1}\right)^{(k-1)} \cap \overleftarrow{N}\left(e_{2 m+1}\right)$ one by one for each $i<m<j$. Indeed, for every $m \leqslant j-i-1$, the number of $(k-1)$-sets in $N\left(e_{2 m-1}\right)^{(k-1)} \cap \overleftarrow{N}\left(e_{2 m+1}\right)$ which do not intersect any previously chosen $(k-1)$-set in the sequence is at least

$$
\left|N\left(e_{2 m-1}\right)^{(k-1)} \cap \overleftarrow{N}\left(e_{2 m+1}\right)\right|-2 t(k-1) n^{k-2} \stackrel{(2.1)}{\geqslant} \frac{1}{t-1}\binom{n}{k-1}-t(k-1) n^{k-2}>0
$$

This means that we can always pick an $e_{2 m} \in N\left(e_{2 m-1}\right)^{(k-1)} \cap \overleftarrow{N}\left(e_{2 m+1}\right)$ that is disjoint from all previously chosen sets.

Putting (2.2) and (2.3) together yields that the ($k-1$)-sets $e_{2 i}, e_{2 i+1}, \ldots, e_{2 j-1}$, form a zycle of length $2(j-i) \leqslant 2 t$. This concludes the proof of the claim.

Let $0<\varepsilon \ll 1 / \ell, m \geqslant \ell / 2$, and $n \in \mathbb{N}$ with $n^{-1} \ll \varepsilon$. Let H be an n-vertex k-graph with $\delta(H) \geqslant(d+\varepsilon) n$. We shall prove that $Z_{\ell} \subseteq H$. Notice that Proposition 2.4 and Claim 1 imply that H contains a copy of $Z_{2 r}(m)$ with $r \in\{1, \ldots, t\}$. Applying Fact 2.3 with $c=\frac{\ell}{2 r} \leqslant m$, we obtain a copy of Z_{ℓ} in H as desired.
2.2. Lower bound. The following construction will provide an example of a Z_{ℓ}-free hypergraph with large minimum codegree.

Definition 2.5. Let $n, p, k \in \mathbb{N}$ be such that p is a prime, $k \geqslant 2$ and $p \mid n$. We define the n-vertex k-graph $\mathbb{F}_{p}^{(k)}(n)$ as follows. The vertex set consists of p disjoint sets of size $\frac{n}{p}$ each, i.e., $V\left(\mathbb{F}_{p}^{(k)}(n)\right)=V_{0} \cup \ldots \cup V_{p-1}$ with $\left|V_{i}\right|=\frac{n}{p}$ for all $i \in[p]$. Given a vertex $v \in V\left(\mathbb{F}_{p}^{(k)}(n)\right)$ we write $\mathfrak{f}(v)=i$ if and only if $v \in V_{i}$ for $i \in\{0,1, \ldots, p-1\}$. We define the edge set of $\mathbb{F}_{p}^{(k)}(n)$ by
$v_{1} \cdots v_{k} \in E\left(\mathbb{F}_{p}^{(k)}(n)\right) \Leftrightarrow\left\{\begin{array}{l}\mathfrak{f}\left(v_{1}\right)+\cdots+\mathfrak{f}\left(v_{k}\right) \equiv 0 \bmod p \text { and } \mathfrak{f}\left(v_{i}\right) \neq 0 \text { for some } i \in[k], \text { or } \\ \mathfrak{f}\left(v_{\sigma(1)}\right)=\cdots=\mathfrak{f}\left(v_{\sigma(k-1)}\right)=0 \text { and } \mathfrak{f}\left(v_{\sigma(k)}\right)=1 \text { for some } \sigma \in S_{k} .\end{array}\right.$
When k is obvious from the context, we omit it from the notation and we always consider the indices of the clusters modulo p.

Lemma 2.6. Let $k \geqslant 3$. For every $\ell \geqslant 2$, we have $\frac{1}{2(k-1)^{\ell}} \leqslant \gamma\left(Z_{\ell}^{(k)}\right)$.
Proof. Given $k \geqslant 3$ and $\ell \geqslant 2$, let $n, p \in \mathbb{N}$ be such that $p \mid n, p$ is a prime larger than k, and $n^{-1} \ll p^{-1}<\frac{1}{(k-1)^{\ell}+1}$. Observe that by the Bertrand-Chebyshev theorem we might take $p \leqslant 2(k-1)^{\ell}$. We shall prove that

$$
\begin{equation*}
\delta\left(\mathbb{F}_{p}(n)\right)=\frac{n}{p} \geqslant \frac{n}{2(k-1)^{\ell}} \quad \text { and } \quad Z_{\ell} \nsubseteq \mathbb{F}_{p}(n) . \tag{2.4}
\end{equation*}
$$

To check the codegree condition in (2.4), take a $(k-1)$-set of vertices v_{1}, \ldots, v_{k-1}. If there is an $i \in[k-1]$ such that $\mathfrak{f}\left(v_{i}\right) \neq 0$, then let j be the only solution in $\{0,1, \ldots, p-1\}$ to the equation

$$
\mathfrak{f}\left(v_{1}\right)+\cdots+\mathfrak{f}\left(v_{k-1}\right)+x \equiv 0 \quad(\bmod p) .
$$

Then, $N\left(v_{1} \cdots v_{k-1}\right) \supseteq V_{j}$ and therefore $d\left(v_{1} \cdots v_{k-1}\right) \geqslant \frac{n}{p}$. If $f\left(v_{i}\right)=0$ for all $i \in[k-1]$, then $N\left(v_{1} \cdots v_{k-1}\right)=V_{1}$ and we obtain $d\left(v_{1} \cdots v_{k-1}\right)=\frac{n}{p}$.

To check the second part of (2.4), assume that there are $r \geqslant 2$ and sets $e_{1}, \ldots, e_{r} \in$ $V\left(\mathbb{F}_{p}(n)\right)^{(k-1)}$ forming a copy of Z_{r}, i.e., we have $e_{i} \triangleright e_{i+1}$ for all i. Here, and for the rest of the proof, we take the sum of indices of the e_{i} 's to be modulo r. We shall prove that

$$
\begin{equation*}
r>\ell \tag{2.5}
\end{equation*}
$$

The following claim states that there is an i_{0} for which $e_{i_{0}}$ is completely contained in one of the clusters of $\mathbb{F}_{p}(n)$. Moreover, that cluster is not V_{0}.

Claim 2. There is an $i_{0} \in[r]$ and a $j \in[p-1]$ such that $e_{i_{0}} \subseteq V_{j}$.
Proof of the claim: Fix any $i \in[r]$, let $e_{i}=v_{1} \cdots v_{k-1}$, and pick $v_{k} \in e_{i+1}$ arbitrarily. We consider four cases.
Case (1): $\left|e_{i} \cap V_{0}\right|=k-1$.
By Definition 2.5 and since $v_{1} \cdots v_{k} \in E\left(\mathbb{F}_{p}(n)\right)$, we have $v_{k} \in V_{1}$. Since we picked $v_{k} \in e_{i+1}$ arbitrarily, we have that $e_{i+1} \subseteq V_{1}$ and finish the proof of this case by taking $i_{0}=i+1$.
Case (2): $\left|e_{i} \cap V_{0}\right|<k-2$.
Let $j \equiv-\left(\mathfrak{f}\left(v_{1}\right)+\cdots+\mathfrak{f}\left(v_{k-1}\right)\right) \bmod p$. By Definition 2.5 and since $v_{1} \cdots v_{k} \in$ $E\left(\mathbb{F}_{p}(n)\right)$, we have

$$
0 \equiv \mathfrak{f}\left(v_{1}\right)+\cdots+\mathfrak{f}\left(v_{k}\right) \equiv \mathfrak{f}\left(v_{k}\right)-j
$$

This means that $v_{k} \in V_{j}$ and since we picked $v_{k} \in e_{i+1}$ arbitrarily, similarly as above we get $e_{i+1} \subseteq V_{j}$. If $j \not \equiv 0$, we finish by taking $i_{0}=i+1$. If $j \equiv 0$, the claim follows from Case (1) for e_{i+1} instead of e_{i}.
Case (3): $\left|e_{i} \cap V_{0}\right|=k-2$ and $\left|e_{i} \cap V_{1}\right|=0$.
This case follows from similar arguments as the previous one.

Case (4): $\left|e_{i} \cap V_{0}\right|=k-2$ and $\left|e_{i} \cap V_{1}\right|=1$.
By Definition 2.5, we either have $v_{k} \in V_{0}$ or $v_{k} \in V_{p-1}$. Thus, since we picked $v_{k} \in e_{i+1}$ arbitrarily, we certainly have $e_{i+1} \subseteq V_{0} \cup V_{p-1}$. Hence, $\mid e_{i+1} \cap$ $V_{1} \mid=0$ and so the proof follows from Cases (1) - (3) for e_{i+1} instead of e_{i}.

We now show that for every $i \in[r]$,

$$
\begin{equation*}
\text { if } e_{i} \subseteq V_{j} \text { with } j \not \equiv 0 \bmod p \text {, then } e_{i+1} \subseteq V_{(1-k) j} \tag{2.6}
\end{equation*}
$$

Indeed, let $e_{i}=v_{1} \cdots v_{k-1} \subseteq V_{j}$ and pick $v_{k} \in e_{i+1}$ arbitrarily. Since $\mathfrak{f}\left(v_{i}\right) \equiv j \bmod p$ for $i \in[k-1]$, we have

$$
\mathfrak{f}\left(v_{1}\right)+\cdots+\mathfrak{f}\left(v_{k-1}\right) \equiv(k-1) j \quad(\bmod p) .
$$

Therefore, since $e_{i} \triangleright e_{i+1}$ implies $v_{1} \cdots v_{k} \in E\left(\mathbb{F}_{p}(n)\right)$ and because $\mathfrak{f}\left(v_{i}\right) \equiv j \not \equiv 0 \bmod p$ for $i \in[k-1]$, we have

$$
0 \equiv \mathfrak{f}\left(v_{1}\right)+\cdots+\mathfrak{f}\left(v_{k}\right) \equiv(k-1) j+\mathfrak{f}\left(v_{k}\right) \quad(\bmod p)
$$

Hence $\mathfrak{f}\left(v_{k}\right) \equiv(1-k) j$, meaning that $v_{k} \in V_{(1-k) j}$. Since we picked $v_{k} \in e_{i+1}$ arbitrarily, we have $e_{i+1} \subseteq V_{(1-k) j}$ proving (2.6).

Finally, we are ready to show (2.5). Let i_{0} and j be given by Claim 2. As p is a prime, \mathbb{F}_{p} is a field. Together with $j \not \equiv 0$, this entails that $(1-k)^{s} j \not \equiv 0(\bmod p)$ for all $s \in[r]$. Thus, r applications of (2.6) imply that

$$
e_{i_{0}+r} \subseteq V_{m} \text { with } m \equiv(1-k)^{r} j \quad(\bmod p)
$$

Since $e_{i_{0}+r}=e_{i_{0}} \in V_{j}$, we have $(1-k)^{r} j \equiv j(\bmod p)$, and as $j \not \equiv 0$, we have $(1-k)^{r} \equiv 1$. Recalling that we chose p such that $p>(k-1)^{\ell}+1$, (2.5) follows.

§3. Proof of Theorem 1.5

3.1. Method. As mentioned in the introduction, to prove Theorem 1.5 we apply the method developed by the authors together with Sales in [10].

Definition 3.1. Given a k-graph $H=(V, E)$, a picture is a tuple $(v, m, \mathcal{L}, \mathcal{B})$, where
(i) $v \in V$,
(ii) $m \in \mathbb{N}$,
(iii) \mathcal{L} is a collection of m-tuples $\mathcal{L} \subseteq(V \backslash\{v\})^{m}$, and
(iv) $\mathcal{B} \subseteq[m]^{(k-1)}$ is a fixed family of $(k-1)$-subsets of $V(H)$,
such that for every $\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{L}$ and every $i_{1} \cdots i_{k-1} \in \mathcal{B}$, the k-sets $v x_{i_{1}} \cdots x_{i_{k-1}}$ are edges of H. That is to say, $x_{i_{1}} \cdots x_{i_{k-1}}$ is an edge in the link of H at v.

We use pictures to find a copy of a k-graph F on H. Roughly speaking, we say that a picture is nice if it 'encodes' a set of edges that would yield a copy of F, but whose existence we cannot (yet) guarantee when considering the link of H at v.

Definition 3.2. Given k-graphs F and $H=(V, E)$, and vertex set $S \subseteq V$, we say that a picture $(v, m, \mathcal{L}, \mathcal{B})$ is S-nice for F, if for every $w \in S$ and every $\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{L}$, the hypergraph with vertex set V and edge set

$$
E \cup\left\{w x_{i_{1}} \cdots x_{i_{k-1}}: i_{1} \cdots i_{k-1} \in \mathcal{B}\right\}
$$

contains a copy of F.
If F is clear from the context, we speak simply of S-nice pictures. The following lemma describes how the existence of S-nice pictures implies that H contains a copy of F.

Lemma 3.3. Let F be a k-graph. Given $\xi, \zeta>0$ and $c, m \in \mathbb{N}$, let $n \in \mathbb{N}$ such that $n^{-1} \ll$ $\xi, \zeta,|V(F)|^{-1}, c^{-1}, m^{-1}$, and let H be an n-vertex k-graph.

Suppose that there are $m \in \mathbb{N}$ and $\mathcal{B} \subseteq[m]^{(k-1)}$ such that for every $S \subseteq V(H)$ with $|S| \geqslant$ c, there is an S^{\prime}-nice picture $(v, m, \mathcal{L}, \mathcal{B})$, with $v \in S, S^{\prime} \subseteq S,\left|S^{\prime}\right| \geqslant \xi|S|$, and $|\mathcal{L}| \geqslant \zeta n^{m}$. Then H contains a copy of F.

Proof. Let $t=\left\lceil\zeta^{-1}\right\rceil+1$. By iteratively applying the conditions of the lemma, we find a nested sequence of subsets $V(H)=S_{0} \supseteq S_{1} \supseteq \cdots \supseteq S_{t}$ such that for $i \in[t]$, there are S_{i}-nice pictures $\left(v_{i}, m, \mathcal{L}_{i}, \mathcal{B}\right)$ satisfying $v_{i} \in S_{i-1},\left|S_{i}\right| \geqslant \xi^{i} n>c$, and $\left|\mathcal{L}_{i}\right| \geqslant \zeta n^{m}$.

Since $t \geqslant \zeta^{-1}+1$, by the pigeonhole principle, there are two indices $0<i<j \leqslant t$ such that $\mathcal{L}_{i} \cap \mathcal{L}_{j} \neq \varnothing$. Let $\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{L}_{i} \cap \mathcal{L}_{j}$. Then because $\left(v_{i}, m, \mathcal{L}_{i}, \mathcal{B}\right)$ is an S_{i}-nice picture and $v_{j} \in S_{j-1} \subseteq S_{i}$, Definition 3.2 guarantees that

$$
E(H) \cup\left\{v_{j} x_{i_{1}} \cdots x_{i_{k-1}}: i_{1} \cdots i_{k-1} \in \mathcal{B}\right\}
$$

contains a copy of F. Since $\left(v_{j}, m, \mathcal{L}_{j}, \mathcal{B}\right)$ is a picture, Definition 3.1 yields $v_{j} x_{i_{1}} \cdots x_{i_{k-1}} \in$ $E(H)$ for all $i_{1} \cdots i_{k-1} \in \mathcal{B}$. Thus, we conclude that this copy of F is in fact in H.

Now we apply Lemma 3.3 to prove Theorem 1.5.
3.2. Proof of Theorem 1.5. Let $\ell \geqslant 3$ be an integer and let $\varepsilon>0$. Let $\xi, \zeta>0$, and let $n, c \in \mathbb{N}$ such that $n^{-1} \ll c^{-1} \ll \zeta, \xi \ll \varepsilon$. Let H be a 3 -graph with $\delta(H) \geqslant \varepsilon n$. We aim to show that $Z_{\ell}^{-} \subseteq H$. Set $m=2$ and $\mathcal{B}=\{\{1,2\}\}$, then due to Lemma 3.3, we only need to prove that for every $S \subseteq V(H)$ of size at least c, there is an S^{\prime}-nice picture $(v, 2, \mathcal{L},\{\{1,2\}\})$ with $v \in S, S^{\prime} \subseteq S,\left|S^{\prime}\right| \geqslant \xi|S|$, and $|\mathcal{L}| \geqslant \zeta n^{2}$.

Given $S \subseteq V(H)$ with $|S| \geqslant c$, take any vertex $v \in S$ and let $V=V(H) \backslash\{v\}$. Observe that using the minimum codegree condition and the above hierarchy, we have

$$
\begin{equation*}
\sum_{b b^{\prime} \in V^{(2)}}\left|N_{L_{v}}(b) \cap N_{L_{v}}\left(b^{\prime}\right) \cap S\right|=\sum_{u \in S \backslash\{v\}}\binom{d_{L_{v}}(u)}{2} \geqslant\binom{\varepsilon n}{2}(|S|-1) \geqslant \xi\binom{n}{2}|S|, \tag{3.1}
\end{equation*}
$$

where L_{v} denotes the link of H at v. Thus, by averaging there is a pair $b_{1}, b_{2} \in V$ such that $\left|N_{L_{v}}\left(b_{1}\right) \cap N_{L_{v}}\left(b_{2}\right) \cap S\right| \geqslant \xi|S|$. We pick $S^{\prime} \subseteq N_{L_{v}}\left(b_{1}\right) \cap N_{L_{v}}\left(b_{2}\right) \cap S$ with $\left|S^{\prime}\right|=\lceil\xi|S|\rceil$.

Since $\delta(H)-2 \ell-\left|S^{\prime}\right| \geqslant \varepsilon n / 2 \geqslant 2$ we can greedily pick pairwise disjoint pairs of vertices $e_{1}, \ldots, e_{\ell-2} \in\left(V(H) \backslash S^{\prime}\right)^{(2)}$ such that

$$
\begin{equation*}
b_{1} b_{2}=e_{1} \triangleright e_{2} \triangleright \cdots \triangleright e_{\ell-2} . \tag{3.2}
\end{equation*}
$$

Now let $R=\bigcup_{i \in[\ell-2]} e_{i}$ and take

$$
\mathcal{L}=\left\{\left(x_{1}, x_{2}\right) \in V^{2}: x_{1} \in N_{H}\left(e_{\ell-2}\right) \backslash R \text { and } x_{2} \in N_{H}\left(x_{1} v\right) \backslash R\right\} .
$$

Note that $|\mathcal{L}| \geqslant(\delta(H) / 2)^{2} \geqslant \varepsilon^{2} n^{2} / 4 \geqslant \zeta n^{2}$. Further, since $x_{1} x_{2} \in E\left(L_{v}\right)$ for every $\left(x_{1}, x_{2}\right) \in$ $\mathcal{L},(v, m, \mathcal{L}, \mathcal{B})$ is a picture in H. Moreover, observe that it is S^{\prime}-nice. Indeed, we only we need to check that for any $u \in S^{\prime}$ and $\left(x_{1}, x_{2}\right) \in \mathcal{L}$, the hypergraph with edges $E(H) \cup$ $\left\{u x_{1} x_{2}\right\}$ contains a copy of Z_{ℓ}^{-}. For this, note that in $E(H) \cup\left\{u x_{1} x_{2}\right\}$ we have $x_{1} x_{2} \triangleright u v$. Further, $u \in S^{\prime}$ and the choice of b_{1} and b_{2} imply $u v \triangleright b_{1} b_{2}$. Together with (3.2), this gives $x_{1} x_{2} \triangleright u v \triangleright e_{1} \triangleright \cdots \triangleright e_{\ell-2}$, and using the fact that $x_{1} \in N\left(e_{\ell-2}\right)$, we obtain a copy of Z_{ℓ}^{-}(where the missing edge is $x_{2} e_{\ell-2}$).

§4. Concluding Remarks

Following a very similar proof as that for Theorem 1.5, we can show a general upper bound for $\gamma\left(Z_{\ell}^{(3)}\right)$ for every $\ell \geqslant 3$.

Proposition 4.1. For $\ell \geqslant 3, \gamma\left(Z_{\ell}^{(3)}\right) \leqslant 1 / 2$.
Proof. Given $\ell \geqslant 3$ and $\varepsilon>0$, let $\xi, \zeta>0$ and $n, c \in \mathbb{N}$ such that $n^{-1} \ll c^{-1} \ll \zeta, \xi \ll \varepsilon$. Let H be a 3 -graph with $\delta(H) \geqslant\left(\frac{1}{2}+\varepsilon\right) n$. We aim to show that $Z_{\ell} \subseteq H$. As in the proof of Theorem 1.5, we pick $m=2$ and $\mathcal{B}=\{\{1,2\}\}$ and due to Lemma 3.3, we only need to prove that for every $S \subseteq V(H)$ of size at least c, there is an $S^{\prime \prime}$-nice picture $(v, 2, \mathcal{L},\{\{1,2\}\})$ with $v \in S, S^{\prime} \subseteq S,\left|S^{\prime}\right| \geqslant \xi|S|$, and $|\mathcal{L}| \geqslant \zeta n^{2}$.

For the first part of the proof we proceed as in the proof of Theorem 1.5 and we only use $\delta(H) \geqslant \varepsilon n$. In particular, we obtain two vertices $b_{1}, b_{2} \in V(H) \backslash\{v\}=: V$ and a set $S^{\prime} \subseteq N_{L_{v}}\left(b_{1}\right) \cap N_{L_{v}}\left(b_{1}\right) \cap S$ with $\left|S^{\prime}\right|=\lceil\xi|S| \mid$. Moreover, we again greedily pick pairwise disjoint pairs of vertices $e_{1}, \ldots, e_{\ell-2} \in\left(V \backslash S^{\prime}\right)^{(2)}$ satisfying (3.2). The set \mathcal{L} is chosen differently. Set $R=\bigcup_{i \in[\ell-2]} e_{i}$ and

$$
\begin{equation*}
\mathcal{L}=\left\{\left(x_{1}, x_{2}\right) \in V^{2}: x_{1}, x_{2} \in N\left(e_{\ell-2}\right) \backslash R \text { and } x_{1} x_{2} \in E\left(L_{v}\right)\right\} . \tag{4.1}
\end{equation*}
$$

Observe that given $x_{1} \in N\left(e_{\ell-2}\right) \backslash R$, any vertex $x_{2} \in\left(N(x v) \cap N\left(e_{\ell-2}\right)\right) \backslash R$, gives rise to $\left(x_{1}, x_{2}\right) \in \mathcal{L}$. Furthermore, since $\delta(H) \geqslant(1 / 2+\varepsilon) n$,

$$
\left|\left(N(x v) \cap N\left(e_{\ell-2}\right)\right) \backslash R\right| \geqslant \varepsilon n-2 \ell \geqslant \frac{\varepsilon}{2} n
$$

and similarly we have $N\left(e_{\ell-2}\right) \backslash R \geqslant n / 2$. Therefore, we obtain $|\mathcal{L}| \geqslant \varepsilon n^{2} / 4$, and since $x_{1} x_{2} \in E\left(L_{v}\right)$ for all $\left(x_{1}, x_{2}\right) \in \mathcal{L},(v, m, \mathcal{L}, \mathcal{B})$ is a picture in H.

To see that the tuple $(v, m, \mathcal{L}, \mathcal{B})$ is indeed an S^{\prime}-nice picture, we shall prove that for every $u \in S^{\prime}$ and $\left(x_{1}, x_{2}\right) \in \mathcal{L}$, the hypergraph with (vertex set $V(H)$ and) edges $E(H) \cup$ $\left\{u x_{1} x_{2}\right\}$ contains a copy of Z_{ℓ}. Indeed, the definition of \mathcal{L} implies $x_{1} x_{2} v \in E(H)$ and therefore $x_{1} x_{2} \triangleright u v$ in $E(H) \cup\left\{u x_{1} x_{2}\right\}$. Also due to the definition of \mathcal{L}, we have $x, y \in$ $N\left(e_{\ell-2}\right)$ and thus, $e_{\ell-2} \triangleright x y$. Moreover, $u \in S^{\prime}$ and the choice of b_{1} and b_{2} entails $u v \triangleright b_{1} b_{2}=$ e_{1}. Combining this with (3.2), we obtain $u v \triangleright e_{1} \triangleright \ldots e_{\ell-2} \triangleright x_{1} x_{2} \triangleright u v$, that is a copy of Z_{ℓ}, in $E(H) \cup\left\{u x_{1} x_{2}\right\}$.

It would be interesting to know whether Proposition 4.1 is sharp for some $\ell \geqslant 3$. The following construction gives a lower bound of $1 / 3$ for the codegree Turán density of any zycle of length not divisible by 3 . Let $n \in \mathbb{N}$ be divisible by 3 and let $H=(V, E)$, where $V=V_{1} \cup V_{2} \cup V_{3}$ with $\left|V_{i}\right|=n / 3$ and $E=\left\{u v w \in V^{(3)}: u, v \in V_{i}\right.$ and $\left.w \in V_{i+1}\right\}$, where the sum is taken modulo 3 . It is not hard to check that $\delta(H) \geqslant n / 3$ and that $Z_{\ell} \ddagger H$ for every ℓ not divisible by 3 .

Observe that $Z_{2}^{(3)}=K_{4}^{(3)}$. For this 3-graph, a well-known conjecture by Czygrinow and Nagle [3] states that $\gamma\left(Z_{2}^{(3)}\right)=\gamma\left(K_{4}^{(3)}\right)=1 / 2$. Regarding the next case, $Z_{3}^{(3)}$, note that its codegree Turán density is not bounded by the previous construction. The following 3 -graph entails $\gamma\left(Z_{3}^{(3)}\right) \geqslant 1 / 4$, and in fact it provides the same lower bound for every $Z_{\ell}^{(3)}$ with ℓ not divisible by 4 . Let $n \in \mathbb{N}$ divisible by 4 and let $H=(V, E)$, where $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$ with $\left|V_{i}\right|=n / 4$. Define the edges of H as

$$
E=\left\{x y z: x, y \in V_{i} \text { and } z \in V_{i+1}\right\} \cup\left\{x y z: x \in V_{1}, y \in V_{2}, z \in V_{3} \cup V_{4}\right\},
$$

where the sum of indices is taken modulo 4 . Clearly, $\delta(H) \geqslant n / 4$. To see that $Z_{\ell} \nsubseteq H$ for ℓ not divisible by 4 , it can be checked that all zycles are of the form $e_{1} \triangleright \cdots \triangleright e_{r}$ such that $e_{i} \subseteq V_{j_{i}}$ for some $j_{i} \in[4]$. Together with Proposition 4.1, this yields

$$
\frac{1}{4} \leqslant \gamma\left(Z_{3}^{(3)}\right) \leqslant \frac{1}{2}
$$

Problem 4.2. Determine the value of $\gamma\left(Z_{3}^{(3)}\right)$.

On a different note, recall that Theorem 1.5 states that $Z_{\ell}^{(3)}$ is (inclusion) minimal with respect to the property of having strictly positive codegree Turán density. It would be interesting to know if this also holds for larger uniformities.

Question 4.3. For $k>3$ and sufficiently large ℓ, what are the minimal subgraphs $F \subseteq Z_{\ell}^{(k)}$ with $\gamma(F)>0$?

In order to prove that the lower bound of Lemma 2.6 in Subsection 2.2, we introduce the k-graphs $\mathbb{F}_{p}^{(k)}(n)$ that have large minimum codegree and are $Z_{\ell}^{(k)}$-free for small ℓ. It would be interesting to study the codegree Turán density of $\mathbb{F}_{p}^{(k)}(n)$ itself. Observe however, that for $n \geqslant p k$ we have $K_{k+1}^{(k)-} \subseteq \mathbb{F}_{p}^{(k)}(n)$, which suggests that this problem might be very difficult for general n.

It is perhaps more natural to study the codegree Turán density of the following k-graph. For $p>k$, let $\widetilde{\mathbb{F}}_{p}^{(k)}$ be the k-graph on $p(k-1)$ vertices with $V\left(\widetilde{\mathbb{F}}_{p}^{(k)}\right)=V_{1} \cup \ldots \cup V_{p}$ where $\left|V_{i}\right|=k-1$ for every $i \in[p]$ and whose edges are given by

$$
v_{1} \cdots v_{k} \in E\left(\widetilde{\mathbb{F}}_{p}^{(k)}\right) \Longleftrightarrow \mathfrak{f}\left(v_{1}\right)+\cdots+\mathfrak{f}\left(v_{k}\right) \equiv 0 \bmod p
$$

where the function $\mathfrak{f}: V\left(\widetilde{\mathbb{F}}_{p}^{(k)}\right) \longrightarrow[p]$ is analogous as in Definition 2.5.
Problem 4.4. For $k \geqslant 3$, determine the codegree Turán density of $\widetilde{\mathbb{F}}_{p}^{(k)}$.

Consider the indices of the clusters V_{1}, \ldots, V_{p} of $\widetilde{\mathbb{F}}_{p}^{(k)}$ to be modulo p. Observe for $j \in[p]$, we have $V_{j} \cup\{v\} \in E\left(\widetilde{\mathbb{F}}_{p}^{(k)}\right)$ for every $v \in V_{(1-k) j}$. It follows that

$$
V_{1} \triangleright V_{1-k} \triangleright \cdots \triangleright V_{(1-k)^{p-2}} \triangleright V_{(1-k)^{p-1}}=V_{1},
$$

where the last identity is given by Fermat's little theorem. Hence, there is an $\ell \leqslant p-1$ such that $Z_{\ell} \subseteq \widetilde{\mathbb{F}}_{p}^{(k)}$ and therefore, Lemma 2.6 yields $\gamma\left(\widetilde{\mathbb{F}}_{p}^{(k)}\right) \geqslant \frac{1}{2(k-1)^{p}}>0$.
Question 4.5. For $k \geqslant 3$, is it true that $\lim _{p \longrightarrow \infty} \gamma\left(\widetilde{\mathbb{F}}_{p}^{(k)}\right)=0$?

References

[1] R. Baber and J. Talbot. "Hypergraphs do jump". Combin. Probab. Comput. 20.2 (2011), 161-171 (\uparrow 2).
[2] J. Balogh, F. Chr. Clemen, and B. Lidickỳ. "Hypergraph Turán Problems in ℓ_{2}-Norm". arXiv:2108.10406 (2021) ($\uparrow 1,2)$.
[3] A. Czygrinow and B. Nagle. "A note on codegree problems for hypergraphs". Bull. Inst. Combin. Appl 32 (2001), 63-69 (\uparrow 11).
[4] P. Erdős. "On extremal problems of graphs and generalized graphs". Israel J. Math. 2.3 (1964), 183-190 (\uparrow 2, 4, 5).
[5] P. Erdős. "Paul Turán, 1910-1976: his work in graph theory". J. Graph Theory 1.2 (1977), 97-101 ($\uparrow 1$).
[6] P. Erdős and V.T. Sós. "On Ramsey-Turán type theorems for hypergraphs". Combinatorica 2 (1982), 289-295 (\uparrow 1, 2).
[7] P. Frankl and V. Rödl. "Hypergraphs do not jump". Combinatorica 4.2-3 (1984), 149-159 (\uparrow 2).
[8] P. Keevash. "Hypergraph Turán problems". Surveys in combinatorics 392 (2011), 83-140 ($\uparrow 1$).
[9] D. Mubayi and Y. Zhao. "Co-degree density of hypergraphs". J. Combin. Theory Ser. A 114.6 (2007), 1118-1132 (个 2, 4).
[10] S. Piga, M. Sales, and B. Schülke. "The codegree Turán density of tight cycles minus one edge". Combin. Probab. Comput. (2023), 1-4 ($\uparrow 3,8)$.
[11] O. Pikhurko. "On possible Turán densities". Israel J. Math. 201.1 (2014), 415-454 (\uparrow 2).
[12] Chr. Reiher. "Extremal problems in uniformly dense hypergraphs". European J. Combin. 88 (2020), 103117 (\uparrow 1).
[13] Chr. Reiher, V. Rödl, and M. Schacht. "Hypergraphs with vanishing Turán density in uniformly dense hypergraphs". J. London Math. Soc. 97.1 (2018), 77-97 (\uparrow 2).
[14] M. Schacht. "Restricted problems in extremal combinatorics". Proceedings of the ICM 2022 (To appear) ($\uparrow 2$).
[15] P. Turán. "On an extremal problem in graph theory". Mat. Fiz. Lapok 48 (1941), 436-452 (\uparrow 1).
(S. Piga) School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Email address: s.piga@bham.ac.uk
(B. Schülke) Mathematics Department, California Institute of Technology, USA

Email address: schuelke@caltech.edu

[^0]: The research leading to these results was partially supported by EPSRC, grant no. EP/V002279/1 (S. Piga). There are no additional data beyond that contained within the main manuscript.

