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Abstract. We show that k-uniform hypergraphs on n vertices whose codegree is
at least p2{3 ` op1qqn can be decomposed into tight cycles, subject to the trivial
divisibility conditions. As a corollary, we show those graphs contain tight Euler
tours as well. In passing, we also investigate decompositions into tight paths.

In addition, we also prove an alternative condition for building absorbers for edge-
decompositions of arbitrary k-uniform hypergraphs, which should be of independent
interest.

1. Introduction

Given a k-uniform hypergraph H, a decomposition of H is collection of subgraphs
of H such that every edge is covered exactly once. If all these subgraphs are isomorphic
copies of the same k-uniform graph F , we say H has an F -decomposition, and that H
is F -decomposable. We refer the reader to the survey of Glock, Kühn, and Osthus [8]
for a recent account on extremal aspects of hypergraph decomposition problems. Here
we investigate hypergraph decompositions into tight cycles.

Given ℓ ą k ě 2, the k-uniform tight cycle of length ℓ, denoted by Cpkq
ℓ , is the k-

graph whose vertices are tv1, . . . , vℓu and its edges are tvi, vi`1, . . . , vi`k´1u for all i P

t1, . . . , ℓu, with the subindices understood modulo ℓ. Given a vertex set S Ď V pHq, we
define the degree degHpSq of S as the number of edges of H which contain S. Given
a vertex v P V pHq, we define the degree of v as the degree of tvu. Given some 0 ď

i ă k, we let δipHq (and ∆ipHq) be the minimum (and maximum, respectively,) value
of degHpSq taken over all i-sets of vertices S. We call δk´1pHq the minimum codegree
of H and sometimes we will write just δpHq if k is clear from context.

We say that a k-graph H is Cpkq
ℓ -divisible if |EpHq| is divisible by ℓ and the degree of

every vertex of H is divisible by k. Clearly, being Cpkq
ℓ -divisible is a necessary condition

to admit an Cpkq
ℓ -decomposition, but in general it is not a sufficient condition. We are

interested in extremal questions of the sort: which conditions on the minimum degree
of large Cpkq

ℓ -divisible graphs ensure the existence of Cpkq
ℓ -decompositions? Given a k-

graph F , we define the F -decomposition threshold δF be the least d ą 0 such that for
every ε ą 0, there exists n0 such that any F -divisible k-graph H on n ě n0 vertices
with δk´1pHq ě pd ` εqn admits an F -decomposition.

In this paper, we are interested in δCpkq

ℓ
. For k “ 2, k-graphs are just graphs, tight

cycles are just graph cycles, and minimum codegree is just minimum degree, and here
much more is known about the values of δCp2q

ℓ
. Barber, Kühn, Lo, and Osthus [3]

show that δCp2q

4
“ 2{3 and for each even ℓ ě 6, δCp2q

ℓ
“ 1{2. Taylor [16] proved exact

minimum degree conditions which yield decompositions into cycles of length ℓ in large
graphs, for ℓ “ 4 and every even ℓ ě 8. For odd values of ℓ, the situation is different.
Joos and Kühn [11] showed that δCp2q

ℓ
“ 1{2 ` cℓ, where cℓ is a sequence of non-zero

numbers depending on ℓ only, which satisfy cℓ Ñ 0 when ℓ Ñ 8.
For k “ 3, the last two authors [14] showed that δCp3q

ℓ
“ 2{3 for sufficiently large ℓ.

In fact, they show that the constant ‘2{3’ is also sharp for the more general problem

The research leading to these results was supported by ANID-Chile through the FONDECYT
Iniciación Nº11220269 grant (N. Sanhueza-Matamala) and EPSRC, grant no. EP/V002279/1 (A. Lo
and S. Piga) and EP/V048287/1 (A. Lo). There are no additional data beyond that contained within
the main manuscript.

1



2 A. LO, S. PIGA, AND N. SANHUEZA-MATAMALA

of decomposing hypergraphs into tight cycles of possibly different lengths, which we
describe now.

A (tight) cycle-decomposition of a k-graph H is an edge partition of H into tight
cycles (of possibly different lengths). A condition which is easily seen to be necessary
to admit a cycle-decomposition is that the degree of every vertex of H is divisible
by k. We define the cycle-decomposition threshold δpkq

cycle be the least d ą 0 such
that for every ε ą 0, there exists n0 such that any k-graph H on n ě n0 vertices
with δk´1pHq ě pd ` εqn such that every vertex of H is divisible by k admits a cycle-

decomposition. Note that δp2q
cycle “ 0 as every graph with even degrees admits a cycle

decomposition. For k “ 3, the last two authors [14] showed that δp3q
cycle “ 2{3. Glock,

Kühn and Osthus [8, Conjecture 5.5] posed the following conjecture for k ě 3.

Conjecture 1.1 (Glock, Kühn and Osthus). For k ě 3, δpkq
cycle ď pk ´ 1q{k.

Cycle decompositions are also related with generalisations of Euler tours to hy-
pergraphs. An Euler tour in a k-graph H is a sequence of (possibly repeating) ver-
tices v1 ¨ ¨ ¨ vm such that each k cyclically consecutive vertices forms an edge of H,
and all edges of H appear uniquely in this way. Similarly, we define the Euler tour
threshold δpkq

Euler be the least d ą 0 such that for every ε ą 0, there exists n0 such that
any k-graph H on n ě n0 vertices with δk´1pHq ě pd ` εqn such that every vertex
of H is divisible by k admits an Euler tour. Chung, Diaconis, and Graham [5] con-
jectured that every large Kpkq

n such that every vertex of H has defree divisible by k
admits an Euler tour. Glock, Joos, Kühn, and Osthus [6] confirmed this conjecture
and showed the existence of Euler tours in suitable hypergraphs by using results on
cycle decompositions, which in particular show δpkq

Euler ă 1 for all k. For k “ 2, it is easy

to see that δp2q
Euler “ 1{2 (as δpHq ě |V pHq|{2 is needed to ensure that the graph H is

connected), and examples show that δpkq
Euler ě 1{2 holds for all k ě 3 [6, Section 1.3].

The following conjecture for all k ě 3 was posed.

Conjecture 1.2 (Glock, Kühn, and Osthus [8]). For k ě 3, δpkq
Euler ď pk ´ 1q{k.

It was first conjectured that δpkq
Euler “ 1{2 for all k ě 3 in [6], but this was disproven

by the last two authors [14] by showing that δp3q
Euler “ 2{3.

Our main result bounds δCpkq

ℓ
for every k ě 2 and each sufficiently large ℓ.

Theorem 1.3. For every k ě 3 there exists an ℓ0 P N such that for every ℓ ě ℓ0 it
holds that δCpkq

ℓ
ď 2{3.

The case when k “ 3 already appears in [14]. For k ě 4, we do not know if the
constant ‘2{3’ appearing in Theorem 1.3 is best-possible. We discuss lower bounds in
Section 2.

In order to prove Theorem 1.3, we also find the decomposition threshold for tight
paths. Given ℓ ą k ě 2, the k-uniform tight path on ℓ vertices, denoted by P pkq

ℓ , is
the k-graph whose vertices are tv1, . . . , vℓu and its edges are tvi, vi`1, . . . , vi`k´1u for
all i P t1, . . . , ℓ´k`1u. A k-graph H is P pkq

ℓ -divisible if |EpHq| is divisible by ℓ´k`1.
We prove that δP pkq

ℓ
“ 1{2.

Theorem 1.4. For every k ě 3 and ℓ ě k ` 1, δP pkq

ℓ
“ 1{2.

Using the techniques we apply to prove our main result, we can give bounds on δpkq
cycle

and δpkq
Euler, which in particular prove Conjectures 1.1 and 1.2 in a strong sense. In fact,

we also prove that both thresholds are always equal.

Theorem 1.5. For all k ě 3, 1{2 ď δpkq
Euler “ δpkq

cycle ď infℓąktδCpkq

ℓ
u ď 2{3.

1.1. Proof ideas. Our proof uses the ‘iterative absorption’ framework to tackle de-
composition problems in hypergraphs; see [2] for a introduction. The proof of the main
result (Theorem 1.3) has three ingredients: an Absorber lemma, a Vortex lemma, and
a Cover-down lemma. The Vortex lemma gives a sequence of subsets V pHq “ U0 Ě
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U1 Ě ¨ ¨ ¨ Ě Ut, and Ut has size independent of n “ |V pHq|. The Absorber lemma gives
a small subgraph A Ď H such that for any Cpkq

ℓ -divisible leftover L, the k-graph AYL
has a cycle decomposition. This reduces the problem to the search of a cycle pack-
ing in H 1 “ H ´ A which only has uncovered edges in Ut. This is found using the
Cover-down lemma: in the ith step we find a collection of edge-disjoint cycles which
covers all edges in H 1rUis ´ H 1rUi`1s but only uses few edges in H 1rUi`1s, this allows
the process to be iterated.

Our proof of the Cover-down lemma requires a result of Joos and Kühn on ‘fractional
decompositions’ [11], and a detour which finds and uses (tight) path decompositions.

Most of the work is required to prove the Absorber lemma. We follow the approach
of [14], where absorbers are built by first finding ‘tour-trail decompositions’ of the
leftover graphs. These decompositions consist on edge-disjoint subgraphs, each of
which forms a tour or a trail. It turns out that it is simple to build absorbers if the
leftover can be decomposed into tours. The goal is then to modify the leftover via
the addition of gadgets, these will suitably modify a given tour-trail decomposition in
steps, so that at the end no trails remain. We also prove an alternative condition for
the existence of absorbers, see Lemma 3.3, which should be of independent interest.

In this high-level description, this is the same outline used to find cycle decom-
positions when k “ 3 in [14], but the proof for k ą 3 requires several non-trivial
modifications. This is specially true in the construction of the absorbers, which is way
more involved than in the k “ 3 case, and can be considered the main new contribution
of the paper.

1.2. Organisation. In Section 2 we give new lower bounds for the Cpkq
ℓ -decomposition

threshold, for certain values of k and ℓ.
In Section 3, we establish a connection between the notion of transformers and

absorbers. In Section 4 we explain the iterative absorption method, including the
statements of their key lemmas. At the end of this section we prove Theorem 1.3.

Sections 5 to 9 are devoted to the proofs of the lemmas used in the iterative absorp-
tion. Section 5 contains the proof of the Vortex lemma. The proof of the Absorber
lemma is the main technical part of our paper, and its proof spans Sections 6, 7, and 8.
The proof of the Cover-down lemma appears in Section 9. We prove Theorem 1.4 in
Section 9.1.

In Section 10 we provide the necesary lemmas for the proof of Theorem 1.5. We
finish in Section 11 with remarks and questions.

1.3. Notation. Let rns “ t1, . . . , nu. Since isolated vertices make no difference in our
context, we usually do not distinguish from a hypergraph H “ pV pHq, EpHqq and its
set of edges EpHq. For a subset U Ď V pHq, we write HzU to mean the subgraph of H
obtained by deleting vertices in U . We write HrU s “ HzpV pHqzUq. For a k-graph G,
we writeH´G “ pV pHq, EpHqzEpGqq. We will suppress brackets and commas to refer
to k-tuples of vertices when they are considered as edges of a hypergraph. For instance,
for v1, . . . , vk P V pHq, v1 ¨ ¨ ¨ vk P H means that the edge tv1, . . . , vku is in EpHq. For
a vertex set S Ď V pHq, the neighbourhood NHpSq of S is the set of vertex sets T Ď

V pHqzS such that SYT P H. Given U Ď V pHq, define NHpS,Uq “ NHrSYUspSq. The
degrees degHpSq and degpS,Uq correspond to |NHpSq| and |NHpS,Uq|, respectively.
We suppress H if it can be deduced from context.

We also use the following notation. Given k ě 2 and r ě 1, and a k-graph H,
define δprqpHq to be the minimum of |Npe1q XNpe2q X ¨ ¨ ¨ XNperq| among all possible
choices of r different pk ´ 1q-sets of vertices e1, . . . , er. More generally, given a set of

vertices U Ď V pHq, we also define δprqpH,Uq as the minimum of |U XNpe1q XNpe2q X

¨ ¨ ¨ X Nperq| among all possible choices of r different pk ´ 1q-sets of vertices e1, . . . , er.
We will use hierarchies in our statements. The phrase “a ! b” means “for every b ą

0, there exists a0 ą 0, such that for all 0 ă a ď a0 the following statements hold”. We
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implicitly assume all constants in such hierarchies are positive, and if 1{a appears we
assume a is an integer.

Suppose that Lemma A states that a k-graph H contains a subgraph J . We write
‘apply Lemma A and obtain edge-disjoint subgraphs J1, . . . , Jℓ’ to mean that ‘for
each i P rℓs, we apply Lemma A to H ´

Ť

jPri´1s Jj to obtain Ji’. Note that H ´
Ť

jPri´1s Jj will also satisfy the condition of Lemma A, but we will not check them

explicitly. Furthermore, suppose that we have already found a subgraph H 1 of H
and we say that ‘apply Lemma A and obtain subgraph J such that V pJqzU are new
vertices’ to mean the ‘we apply Lemma A to H ´ pV pH 1qzUq to obtain J ’.

2. Lower bounds

Given a k-graph H, let CℓpHq be the family of all C
pkq

ℓ in H and CℓpH, eq the family
of ℓ-cycles containing a fixed edge e P H. A fractional C

pkq

ℓ -decomposition of H is a
function ω : CℓpHq Ñ r0, 1s such that, for every edge e P H,

ř

CPCℓpH,eq ωpCq “ 1.

We define the fractional C
pkq

ℓ -decomposition threshold δ˚
C

pkq

ℓ
be the least d ą 0 such

that, for every ε ą 0, there exists n0 such that any k-graph H on n ě n0 vertices
with δk´1pHq ě pd ` εqn admits a fractional C

pkq

ℓ -decomposition.
Here, we give lower bounds on the parameter δ˚

Cpkq
ℓ

. Joos and Kühn [11] showed

that δ˚
Cpkq

ℓ
ě 1

2 ` 1
pk´1`2{kqpℓ´1q

holds for each k ě 2 and ℓ not divisible by k. We give

new bounds, which remove the dependency on k.

Proposition 2.1. Let 1 ď i ă k ă ℓ with ℓ not divisible by k and r “ k{ gcdpk, ℓq. Let
Ifree “ t0 ď i ď k : i ı 0 mod ru, Iodd “ t0 ď i ď k : i ı 0 mod 2u and Ieven “ t0 ď

i ď k : i ” 0 mod 2u. Then

(2.1) δ˚

C
pkq

ℓ

ě
1

2
`

1

2kpℓ ´ 1q
max

#

ÿ

iPIfreeXIodd

ˆ

k

i

˙

,
ÿ

iPIfreeXIeven

ˆ

k

i

˙

+

ě
1

2
`

1

4pℓ ´ 1q
.

Our constructions are based on [9, Proposition 3.1]. Given vertex-disjoint sets A,B
and 0 ď i ď k, we let Hpkq

i pA,Bq be the k-graph on AYB such that e P Hi if and only
if |e X B| “ i. We need the following observation.

Proposition 2.2. Let 1 ď i ă k ă ℓ and d “ gcdpk, ℓq. Let A and B be disjoint vertex

sets, and let Hi “ Hpkq
i pA,Bq. Then Hi is C

pkq

ℓ -free for all k ´ i ı 0 mod k{d.

Proof. Suppose ℓ ą k is such that v1 ¨ ¨ ¨ vℓ are the vertices of a copy of Cpkq
ℓ in Hi.

Letting d “ gcdpk, ℓq, we shall show that k{d divides k ´ i. For all j P rℓs, let
ϕj P tA,Bu be such that vj P ϕj and let ϕℓ`j “ ϕj . Note that ϕj “ ϕj`k for all j P rℓs.
Hence, ϕj`d “ ϕj for all j P rℓs. Thus

k ´ i “ |tv1, . . . , vku X A| “ |tj P rks : ϕj “ Au| P tk{d, 2k{d, . . . , ku

as required. ■

We say a k-graph H on n vertices admits an η-approximate F -decomposition if it
has a collection of edge-disjoint copies of F covering all but ηnk edges. By a result of
Rödl, Schacht, Siggers, and Tokushige [15], any bound on the codegree of k-graphs not
containing η-approximate decompositions, for arbitrary small η, is essentially equiva-
lent to bound the corresponding numbers for fractional C

pkq

ℓ -decomposition. Thus, we
will focus on the former.

Proof of Proposition 2.1. Let n be sufficiently large. Let A and B be disjoint vertex

sets each of size tn{2u and rn{2s respectively. For each 0 ď i ď k, let Hi “ H
pkq

i pA,Bq.
Note that

|Hi|
`

n
k

˘ “
1

2k

ˆ

k

i

˙

` op1q .(2.2)
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Let d “ gcdpk, ℓq. Since ℓ is not divisible by k, then r “ k{d ą 1. It holds that k´i ı

0 mod r if and only if i ı 0 mod r. Let Hodd “
Ť

iPIodd
Hi and Heven “

Ť

iPIeven
Hi. Note

that δpHoddq, δpHevenq ě n{2 ´ k. From (2.2) it follows that both |Hodd| and |Heven|

have size p12 ` op1qq
`

n
k

˘

.
Let H 1

odd “
Ť

iPIoddXIfree
Hi and H 1

even “
Ť

iPIevenXIfree
Hi. Note that by (2.2), we

have

(2.3)
|H 1

odd|
`

n
k

˘ “
1

2k

ÿ

iPIoddXIfree

ˆ

k

i

˙

` op1q and
|H 1

even|
`

n
k

˘ “
1

2k

ÿ

iPIevenXIfree

ˆ

k

i

˙

` op1q.

Observe that given odd numbers i ‰ j there no tight path in Hodd connecting an
edge from Hi with an edge of Hj . Therefore, Proposition 2.2 yields that no edge
in H 1

odd is contained in a copy of C
pkq

ℓ in Hodd. Let

p “
2|H 1

odd|

pℓ ´ 1q
`

n
k

˘ ,

and suppose η ą 0 is given. Consider H˚
even to be a sub-k-graph of Heven such

that δpH˚
evenq ě pp ´ 4ηqn{2 and

|H˚
even| ď pp ´ 2.1ηq|Heven| ă |H 1

odd|{pℓ ´ 1q ´ ηnk.(2.4)

Such a sub-k-graph can be obtained by taking random edges from Heven independently
with probability p ´ 3η.

We claim H “ Hodd Y H˚
even does not admit an η-approximate C

pkq

ℓ -decomposition.
Since no edge of H 1

odd is contained in copy of C
pkq

ℓ in Hodd, each C
pkq

ℓ containing
an edge in H 1

odd must contain at least one edge in H˚
even. Therefore, if H contains

an η-approximate C
pkq

ℓ -decomposition, then we have

pℓ ´ 1q|H˚
even| ě |H 1

odd| ´ η|H| ě |H 1
odd| ´ ηnk,

contradicting (2.4). Note that δpHq ě δpHoddq ` δpH˚
evenq ě p1` p´ 4.5ηqn{2. There-

fore, from (2.3), letting n tend to infinity, and η tend to zero, we deduce that

δ˚

C
pkq

ℓ

ě lim
nÑ8

1

2
p1 ` pq “

1

2
`

1

2kpℓ ´ 1q

ÿ

iPIoddXIfree

ˆ

k

i

˙

.

An analogous construction, selecting H˚
odd Ď Hodd as a random set of the appropriate

size with respect to H 1
even, gives that

δ˚

C
pkq

ℓ

ě
1

2
`

1

2kpℓ ´ 1q

ÿ

iPIevenXIfree

ˆ

k

i

˙

,

and therefore we have

δ˚

C
pkq

ℓ

ě
1

2
`

1

2kpℓ ´ 1q
max

#

ÿ

iPIoddXIfree

ˆ

k

i

˙

,
ÿ

iPIevenXIfree

ˆ

k

i

˙

+

.

which gives the first inequality of (2.1).
To bound this last term, note that

ÿ

iPIoddXIfree

ˆ

k

i

˙

`
ÿ

iPIevenXIfree

ˆ

k

i

˙

“
ÿ

1ďiďk,iı0 mod r

ˆ

k

i

˙

ě 2k´1.

The last inequality follows since
ř

iPrks : i”0 mod r

`

k
i

˘

counts the number of sets of rks

of size divisible by r, and we recall that r ą 1. If Pr Ď Pprksq is that family, then
X ÞÑ X△t1u is an injection from Pr to PprksqzPr, and thus |Pr| ď |Pprksq|{2 “ 2k´1.

We deduce that max
!

ř

iPIoddXIfree

`

k
i

˘

,
ř

iPIevenXIfree

`

k
i

˘

)

ě 2k´2, which then yields

δ˚

C
pkq

ℓ

ě
1

2
`

1

4pℓ ´ 1q
,
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as desired. ■

We can get better bounds for some choices of k and ℓ by looking at (2.1) in detail.

Corollary 2.3. Let 3 ď k ă ℓ with ℓ ı 0 mod k. Then

δ˚

C
pkq

ℓ

ě

#

1
2 ` 1

2pℓ´1q
if k{ gcdpℓ, kq is even,

1
2 ` 1´2´k

2pℓ´1q
if gcdpℓ, kq “ 1 and k is odd.

Proof. Let d “ gcdpk, ℓq and k “ dr. If r is even, then Iodd X Ifree “ Iodd. Therefore
ř

iPIoddXIfree

`

k
i

˘

“
ř

iPIodd

`

k
i

˘

“ 2k´1, so δ˚
C

pkq

ℓ
ě 1

2` 1
2pℓ´1q

follows from Proposition 2.1.

If d “ 1, then r “ k, and therefore Ifree “ rk ´ 1s. This implies
ř

iPIfree

`

k
i

˘

“ 2k ´ 2

and therefore max
!

ř

iPIoddXIfree

`

k
i

˘

,
ř

iPIevenXIfree

`

k
i

˘

)

ě 2k´1 ´ 1, then δ˚
Cpkq

ℓ
ě 1

2 `

1´2´k

2pℓ´1q
again follows from Proposition 2.1. ■

Finally, we can get bounds for the non-fractional thresholds δCpkq
ℓ

by modifying
the k-graphs we construct in the proof of Proposition 2.1 in such a way that they also
are Cpkq

ℓ -divisible. By removing at most ℓ´1 edges it is easy to make the total number
of edges divisible by ℓ, so the only real challenge is to make every degree divisible
by k. We prove later (Corollary 9.11) that, for each ε ą 0 (assuming n sufficiently
large), we can find F Ď H whose number of edges is divisible by ℓ, δk´1pH ´ F q ě

δk´1pHq ´ εn, and for each v P V pHq, degH´F pvq ” 0 mod k. Thus the graphs we
construct in Proposition 2.1 can be modified to be Cpkq

ℓ -divisible, which implies the
following bounds:

Corollary 2.4. For all 3 ď k ă ℓ and ℓ not divisible by k,
(i) δCpkq

ℓ
ě 1

2 ` 1
4pℓ´1q

,

(ii) if k{ gcdpℓ, kq is even, then δCpkq
ℓ

ě 1
2 ` 1

2pℓ´1q
, and

(iii) if k{ gcdpℓ, kq “ 1 and ℓ is odd, then δCpkq
ℓ

ě 1
2 ` 1´2´k

2pℓ´1q
.

3. Absorbers versus transformers

In this section, we introduce absorbers and transformers, which are essential tools
in the iterative absorption technique. We prove that the existence of absorbers is
essentially equivalent to the existence of transformers, and we work with the latter
concept in the rest of the paper. We state our results in a general fashion, that is,
for F -decompositions into general hypergraphs, not just cycles.

Let F and G be k-graphs. We say that a k-graph A is an F -absorber for G if
both A and A Y G have F -decompositions and ArV pGqs “ H. Note that if there is
an F -absorber for G, then G is F -divisible. The following definition describe k-graphs
containing absorbers in a robust way.

Definition 3.1. Let η : N Ñ N be a function. We say that a k-graph H on n vertices
is pF,mG,mW , ηq-absorbing if, for all F -divisible subgraphs G of H with |V pGq| ď mG

and W Ď V pHqzV pGq with |W | ď mW ´ ηp|V pGq|q, HzW contains an F -absorber A
for G with |A| ď ηp|V pGq|q.

We will use so-called transformers to construct absorbers. The rôle of transformers
allows us to replace G with a ‘homomorphic copy’ G1 of G. Given k-graphs G and G1,
a function ϕ : V pGq Ñ V pG1q is an edge-bijective homomorphism from G to G1 if we
have G1 “ tϕpv1q . . . ϕpvkq : v1 . . . vk P Gu. A pG,G1;F q-transformer is a k-graph T
such that T Y G and T Y G1 are F -decomposable and T rV pGqs Y T rV pG1qs is empty.
The following definition is analogous to Definition 3.1 but for transformers.

Definition 3.2. Let η : N Ñ N be an increasing function with ηpxq ě x. We
say that a k-graph H on n vertices is pF,mG,mW , ηq-transformable if, for vertex-
disjoint homomorphic F -divisible subgraphs G,G1 of H and W Ď V pHqzV pG Y G1q
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and |V pGq|, |V pG1q| ď mG and |W | ď mW ´ ηp|V pGq|q, HzW contains a pG,G1;F q-
transformer T with |T | ď ηpmaxt|V pGq|, |V pG1q|uq.

It is not difficult to see that if a k-graph H is pF,mG,mW , ηq-absorbing, then H is
also pF,mG,mW , 2ηq-transformable (see proof of Lemma 3.3). In fact, the converse is
true with different constants as long as there are enough copies of F in H.

Lemma 3.3. Let η : N Ñ N be an increasing function with ηpxq ě x and mW ,mG ě

0. Let F be a k-graph and u1 ¨ ¨ ¨uk P F . Let H be a k-graph such that, for any
distinct v1, . . . , vk P V pHq and W Ď V pHqztvi : i P rksu with |W | ď mW , pH Y

tv1, . . . , vkuqzW contains a copy of F with ui mapped to vi for all i P rks. Then
if H is pF,mG,mW , ηq-absorbing then H is pF,mG,mW , 2ηq-transformable. Moreover,
if H is pF,mG,mW , ηq-transformable, then H is pF,mG,mW , η1q-absorbing for some
increasing function η1 : N Ñ N with η1pxq ě x.

For k-graphs G and H and q P N, we write G ` qH to be the vertex-disjoint union
of G and q copies of H. We now show that, by adding q vertex-disjoint copies of F
to G, the k-graph G ` qF has an edge-bijective homomorphism to K

pkq
m . We will

require the following theorem regarding the existence of F -decompositions in high
codegree k-graphs. Recall that δF is the F -decomposition threshold.

Theorem 3.4 (Glock, Kühn, Lo and Osthus [7]). For all k-graphs F , there exists a
constant cF ą 0 such that δF ď 1 ´ cF .

A subsequent alternative proof of Theorem 3.4 was given by Keevash [12].

Lemma 3.5. Let F be a k-graph. Then, for all t P N, there exist integers q “ qptq
and m “ mptq such that, for any F -divisible k-graph G with |G| “ t, there exists an
edge-bijective homomorphism from G ` qF to K

pkq
m .

Proof. Let 1{m ! 1{t, 1{k be such that K
pkq
m is F -divisible. Let G1 be an isomorphic

copy of G with V pG1q Ď V pK
pkq
m q. Clearly there is an edge-bijective homomorphism

from G to G1. To prove the lemma, it suffices to show that H “ Km ´ G is F -
decomposable and set q “ |H|{|F |. Both G and K

pkq
m are F -divisible, so is H. Note

that |V pGq| ď k|G| ď kt, so δpHq ě p1 ´ kt{mqm. By Theorem 3.4, H has an
F -decomposition. ■

We now sketch the how to construct absorber from transformers, that is, the back-
wards direction of the proof of Lemma 3.3. Let G be an F -divisible k-graph with t
edges. By Lemma 3.5, G ` qF has an edge-bijective homomorphism to K

pkq
m . Hence

there exists a pG`qF,K
pkq
m ;F q-transformer T . Note that T1 “ T YqF is a pG,K

pkq
m ;F q-

transformer. Since m and q only depend on t “ |G|, by replacing G with s “ t{|F |

copies of F , we can find a psF,K
pkq
m ;F q-transformer T2. Then T1 Y K

pkq
m Y T2 is

a pG, sF ;F q-transformer and so T1 Y K
pkq
m Y T2 is an F -absorber for G.

However, an obvious obstacle with this approach is that H may not contain any
such large clique K

pkq
m . To overcome this problem, we consider the extension oper-

ator ∇ (which was introduced in [7, Definition 8.13]). Fix an edge u1 ¨ ¨ ¨uk P F .
Consider any distinct vertices v1, . . . , vk P V pHq. Define ∇F,u1...uk

pv1 . . . vkq to be a
copy of F ´u1 ¨ ¨ ¨uk with vi playing the rôles of ui. For a k-graph G on V pGq Ď V pHq,
define ∇F,u1¨¨¨uk

pGq to be the union of
Ť

ePG∇F,u1¨¨¨uk
peq, where the ordering of each

edge e P G will be clear from the context and V p∇F,u1¨¨¨uk
peqqze are new vertices.

Note that G Y ∇F,u1¨¨¨uk
pGq is F -decomposable. The hypothesis of Lemma 3.3 im-

plies that ∇F,u1¨¨¨uk
pGq, ∇F,u1¨¨¨uk

pK
pkq
m q and ∇F,u1¨¨¨uk

psF q exist. We then construct
transformers between them to obtain an F -absorber for G.

Proof of Lemma 3.3. First suppose that H is pF,mG,mW , ηq-absorbing. Let G and G1

be vertex-disjoint F -divisible subgraphs of H with |V pGq|, |V pG1q| ď mG. Let W Ď

V pHqzV pG Y G1q with |W | ď mW ´ 2ηpmaxt|V pGq|, |V pG1q|uq. By the property of
being pF,mG,mW , ηq-absorbing, HzpW Y V pG1qq contains an F -absorber A1 for G
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with A1rV pGqs “ H and |V pA1q| ď ηp|V pG1q|q. Also, HzpW Y V pA1qq contains an F -
absorber A2 for G1 with A2rV pG1qs “ H and |A2| ď ηp|V pG1q|q. Let T “ A1 Y A2.
Note that T YG and T YG1 have F -decompositions and T rV pGYG1qs “ H. Hence T
is an pG1, G2;F q-transformer. Moreover,

|V pT q| “ |V pA1q| ` |V pA2q| ď ηp|V pGq|q ` ηp|V pG1q|q ď 2ηpmaxt|V pGq|, |V pG1q|uq.

So H is pF,mG,mW , 2ηq-transformable.
Now suppose that H is pF,mG,mW , ηq-transformable. Let qptq and mptq be the

functions given by Lemma 3.5. Let η1 be the function given by

η1pxq “ 2η

ˆ

|V pF q|

ˆ

mpxq

k

˙˙

.

We now show that H is pF,mG,mW , η1q-absorbing.
Let G be an F -divisible subgraph of H with |V pGq| ď mG and W Ď V pHqzV pGq

with |W | ď mW ´ η1pmGq. Let

q1 “ qp|G|q, m1 “ mp|G|q, q2 “

ˆ

m1

k

˙

{|F |.

Let pq1 ` q2qF be in HzpV pGq Y W q, which exists by our assumption of H. Let
G1 “ G ` q1F and G3 “ q2F . Hence, G1 and G3 are vertex-disjoint and are in HzW .
Let V 1 “ tv1

1, . . . , v
1
m1

u Ď V pHqzpV pG1 Y G3q Y W q. Consider a K
pkq
m1 on V 1, which

may not exist in H. By Lemma 3.5, there exists an edge-bijective homomorphism ϕj

from Gj to K
pkq
m for j P t1, 3u. Order edges in K

pkq
m into v1

i1
. . . v1

ik
such that i1 ă

¨ ¨ ¨ ă ik. By ϕ1 and ϕ3, this implies an ordering on all edges of G1 Y G3. Fix an
edge u1 ¨ ¨ ¨uk P F . Let

G1
1 “ ∇F,u1...uk

pG1q, G1
2 “ ∇F,u1...uk

pKpkq
m1

q, G1
3 “ ∇F,u1...uk

pG3q.

Let ℓ “ |V pF q|
`

m1

k

˘

. Note that

|V pG1
jq| ď |V pF q||G1

j | “ |V pF q|

ˆ

m1

k

˙

“ ℓ.

By the property ofH, H contains vertex-disjoint G1
1, G

1
2, G

1
3 such that G1

jrV pGjqs “ H.

Since H is pF,mG,mW , ηq-transformable, HzpW Y V pG1
3qq contains a pG1

1, G
1
2;F q-

transformer T1 with |V pT1q| ď ηpℓq. Similarly, HzpW YV pG1
1q Y pT1zV pG1

2qqq contains
a pG1

2, G
1
3;F q-transformer T2 with |V pT2q| ď ηpℓq.

Let A “ pG1 ´ Gq Y G1
1 Y T1 Y G1

2 Y T2 Y G1
3 Y G3. Recall that pG1 ´ Gq, G1 Y G1

1,
G1

3 Y G3 and G3 have F -decompositions. Hence

A Y G “ pG1 Y G1
1q Y pT1 Y G1

2q Y pT2 Y G1
3q Y G3 and

A “ pG1 ´ Gq Y pG1
1 Y T1q Y pG1

2 Y T2q Y pG1
3 Y G3q

are F -decomposable. Therefore A is an F -absorber for G. Note that ArV pGqs “

T1rV pGqs Ď T1rV pG1
1qs “ H and

|V pAq| ď |V pT1q| ` |V pT2q| ď 2ηpℓq “ η1p|V pGq|q.

Hence H is pF,mG,mW , η1q-absorbing. ■

4. Iterative absorption and proof of the main result

The method of iterative absorption is based on three main lemmas: the Vortex
lemma, the Absorber lemma, and the Cover-down lemma. We state these lemmas
while explaining the general strategy, then we will use them to prove Theorem 1.3. We
proof of these lemmas are in Sections 5-9 (Sections 6-8 are dedicated to the Absorber
lemma).

A sequence of nested subsets U0 Ě ¨ ¨ ¨ Ě Ut of vertices of a k-graph H is a pδ, ξ,mq-
vortex for H if
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(V1) U0 “ V pHq,
(V2) for each i P rts, |Ui| “ tξ|Ui´1|u,
(V3) |Ut| “ m,

(V4) δp2qpHrUisq ě δ|Ui|, for each 0 ď i ď t and

(V5) δp2qpHrUis, Ui`1q ě δ|Ui`1|, for each 0 ď i ă t.

The Vortex lemma gives us the existence of vortices with the right parameters.

Lemma 4.1 (Vortex lemma). Let δ ą 0 and 1{m1 ! ξ, 1{k. Let H be a k-graph

on n ě m1 vertices with δp2qpHq ě δ. Then H has a pδ ´ ξ, ξ,mq-vortex, for some
tξm1u ď m ď m1.

Using the properties of such a vortex, we will iteratively find C
pkq

ℓ -packings covering
the edges from HrUis in every step, without taking too many edges from the following
sets Ui`1, . . . , Ut in the vortex. The Cover-down lemma will provide the existence of
those packings in every step.

Lemma 4.2 (Cover-down lemma). For every k ě 3 and every α ą 0, there is an ℓ0 P N
such that for every µ ą 0 and every n, ℓ P N with ℓ ě ℓ0 and 1{n ! µ, α the following
holds. Let H be a k-graph on n vertices, and U Ď V pHq with |U | “ tαnu, and they
satisfy

(CD1) δp2qpHq ě 2αn,

(CD2) δp2qpH,Uq ě α|U | and
(CD3) degHpxq is divisible by k for each x P V pHqzU .

Then H contains a C
pkq

ℓ -decomposable subgraph F Ď H such that H ´ HrU s Ď F
and ∆k´1pF rU sq ď µn.

Finally, after repeated applications of the Cover-down lemma, we only need to con-
sider the edges remaining in HrUts. For these last edges, we apply the Absorber
lemma. This lemma says that the k-graph H is pC

pkq

ℓ ,m,m, η1q-absorbing, and there-
fore, it contains an absorber for any possible C

pkq

ℓ -divisible k-graph left as a remainder
in Ut (which is of size m).

Lemma 4.3 (Absorber lemma). Let 1{n ! ε ! 1{ℓ, 1{k, 1{m with k ě 3 and ℓ ě

2pk2 ´ kq ` 1. Let H be a k-graph on n vertices with δp3qpHq ě 2εn. Then H is
pC

pkq

ℓ ,m,m, η1q-absorbing for some increasing function η1 : N Ñ N satisfying η1pxq ě x
and independent of ε and n.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We divide the proof into three steps: setting the vortex and
absorber, covering down, and using the absorber to conclude. We suppose ε, ℓ, m1, n0

are chosen according to the following hierarchy: 1{n0 ! 1{m1 ! ε, 1{ℓ ! 1{k.
Let H be a Cpkq

ℓ -divisible k-graph on n ě n0 with δk´1pHq ě p2{3`8εqn and observe

that this immediately implies that δp3qpHq ě 8εn and that δp2qpHq ě p1{3 ` 8εqn. To
prove the lemma, it is enough to show that H has a Cpkq

ℓ -decomposition.

Step 1: Setting the vortex and absorber. By Lemma 4.1, we obtain a p1{3 ´ 7ε, ε,mq-
vortex U0 Ě ¨ ¨ ¨ Ě Ut in H, for some m satisfying tεm1u ď m ď m1.

Let L be the set of all Cpkq
ℓ -divisible subgraphs ofHrUts. Clearly, |L| ď 2p|Ut|

k q ď 2m
k
.

Let L P L be arbitrary. Clearly, δp3qpH ´HrU1sq ě 7εn. By Lemma 4.3 and the choice
of constants, we deduce H ´ HrU1s is pCpkq

ℓ ,m,m, η1q-absorbing for some increasing
function η1 : N Ñ N which satisfies η1pxq ě x. Thus, H ´ HrU1s contains an Cpkq

ℓ -
absorber AL in H 1, with ALrUts “ H and |AL| ď η1pmq. We iterate this argument,
finding edge-disjoint absorbers AL1 Ď H ´ HrU1s, one for each L1 P L. This indeed
can be done, since in each step, by removing all the absorbers found so far, we remove
at most |L|η1pmq ď εn{3 edges overall. Thus H ´ HrU1s, after removing the already
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found absorbers, still satisfies δp3qpH ´HrU1sq ě 6εn and thus Lemma 4.3 can still be
invoked.

Let A “
Ť

LPLAL Ď H ´ HrU1s be the edge-disjoint union of all absorbers. As
argued before, A contains at most εn{3 edges in total. By construction, A is Cpkq

ℓ -
decomposable, and for each L P L, AYL is Cpkq

ℓ -decomposable. Let H 1 “ H´A. Note
that δk´1pH 1q ě p2{3` 6εqn and U0 Ě ¨ ¨ ¨ Ě Ut is a p1{3` 5ε, ε,mq-vortex for H 1 (this
is because we have ensured A Ď H ´ HrU1sq. Since H and A are Cpkq

ℓ -divisible, H 1 is
also Cpkq

ℓ -divisible.

Step 2: Covering down. Now we want to find a Cpkq
ℓ -packing in H 1 which covers all

edges in H 1 ´HrUts. For this, we proceed as follows. Let Ut`1 “ H. For each 0 ď i ď ℓ
we will find Hi Ď H 1rUis such that

(ai) H 1 ´ Hi has a Cpkq
ℓ -decomposition,

(bi) δp2qpHiq ě p1{3 ` 3εq|Ui|,

(ci) δp2qpHi, Ui`1q ě p1{3 ` 3εq|Ui`1|, and
(di) HirUi`1s “ H 1rUi`1s.
For i “ 0 this is done by setting H0 “ H 1. Now, suppose that for 0 ď i ă ℓ we

have found Hi Ď H 1rUis satisfying (ai)–(di), we construct Hi`1 Ď H 1rUi`1s satisfying
(ai`1)–(di`1). By (ai), Hi is Cpkq

ℓ -divisible. Let H 1
i “ Hi ´ HirUi`2s. By (bi)–(ci)

and |Ui`2| ď ε|Ui`1| ď ε2|Ui|, we have

(C1) δp2qpH 1
iq ě p1{3 ` 2εq|Ui|,

(C2) δp2qpH 1
i, Ui`1q ě p1{3 ` 2εq|Ui`1|, and

(C3) degH 1
i
pxq is divisible by k for each x P UizUi`1.

Now we apply Lemma 4.2 with 1{3, ℓ, ε6, |Ui|, H 1
i and Ui`1 playing the rôles of

the parameters α, ℓ, µ, n, H and U . By doing so, we obtain a Cpkq
ℓ -decomposable

subgraph Fi Ď H 1
i such that H 1

i ´ H 1
irUi`1s Ď Fi and ∆k´1pFirUi`1sq ď ε6|Ui|.

We let Hi`1 “ HrUi`1s ´Fi, and we now show that it satisfies the required proper-
ties. Since H 1 ´ Hi`1 is the edge-disjoint union of H 1 ´ Hi and Fi and both are Cpkq

ℓ -
decomposable, we deduce that (ai`1) holds. Note that we have ∆k´1pFirUi`1sq ď

ε6|Ui| ď ε4|Ui`1| ď ε|Ui`1|. From the definition of p1{3`5ε, ε,mq-vortex for H 1, we de-

duce that δp2qpH 1rUi`1sq ě p1{3`5εq|Ui`1| and δp2qpH 1rUi`1s, Ui`2q ě p1{3`5εq|Ui`2|.

Using this, we are able to deduce that δp2qpH 1
i`1q ě δp2qpH 1rUi`1sq´2∆k´1pFirUi`1sq ě

p1{3 ` 5ε ´ 2εq|Ui`1| ě p1{3 ` 3εq|Ui`1|, and similarly we have δp2qpH 1
i`1, Ui`2q ě

p1{3 ` 3εq|Ui`2|, This shows that (bi`1) and (ci`1) hold. Finally, since Fi Ď H 1
i “

Hi ´ HirUi`2s we have that Hi`1rUi`2s “ HirUi`2s “ H 1rUi`2s, and therefore (di`1)
holds.

At the end of this process, we have obtained Ht Ď H 1rUts such that H 1 ´ Ht has
a Cpkq

ℓ -decomposition.

Step 3: Finish. Since H 1 and H 1 ´ Ht are Cpkq
ℓ -divisible, we deduce Ht Ď H 1rUts

is Cpkq
ℓ -divisible. Therefore, Ht P L, and by construction we know that Ht Y A has

a Cpkq
ℓ -decomposition. Thus H is the edge-disjoint union of Ht Y A and H 1 ´ Ht and

both of them have Cpkq
ℓ -decompositions, so we deduce H has a Cpkq

ℓ -decomposition as
well. ■

5. Vortex lemma

We prove Lemma 4.1 by selecting subsets at random (cf. [2]).

Proof. Let n0 “ n and ni “ tξni´1u for all i ě 1. In particular, note ni ď ξin. Let t
be the largest i such that ni ě m1 and let m “ nℓ`1. Note that tξm1u ď m ď m1.

Let ξ0 “ 0 and, for all i ě 1, define ξi “ ξi´1 ` 2pξinq´1{3. Thus we have

ξt`1 “ 2n´1{3
ÿ

iPrts

pξ´1{3qi ď 2n´1{3
ÿ

iPN
pξ´1{3qi ď

2pnξq´1{3

1 ´ ξ´1{3
ď ξ,
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where in the last inequality we used 1{m1 ! ξ and n ě m1.
Clearly, taking U0 “ V pHq is a pδ ´ ξ0, ξ, n0q-vortex in H. Suppose now we have

already found a pδ ´ ξi´1, ξ, ni´1q-vortex U0 Ě ¨ ¨ ¨ Ě Ui´1 in H for some i ď t ` 1.

In particular, δp2qpHrUisq ě pδ ´ ξi´1q|Ui|. Let Ui Ď Ui´1 be a random subset of
size ni. By standard concentration inequalities, with positive probability we have

δp2qpHrUisq ě pδ ´ ξi´1 ´ n
´1{3
i q|Ui| and δp2qpHrUi´1s, Uiq ě pδ ´ ξi´1 ´ n

´1{3
i q|Ui|.

Since ξi´1 ` n
´1{3
i ď ξi, we have found a pδ ´ ξi, ξ, niq-vortex for H. In the end, we

have found a pδ ´ ξℓ`1, ξ, nt`1q-vortex for H. Since m “ nt`1 and ξt`1 ď ξ, we are
done. ■

6. Transformers I: gadgets

In this and the next two sections we prove Lemma 4.3, the Absorber lemma. Fol-
lowing Lemma 3.3, it is enough to find transformers instead of absorbers. In this part,
we introduce gadgets, which will be building blocks of our transformers.

A k-uniform trail is a sequence of (possibly repeated) vertices such that any k
consecutive vertices form an edge, and no edge appears more than once. A k-uniform
tour is a k-uniform trail v1 ¨ ¨ ¨ vt such that vi “ vt´k`1`i for i P rk ´ 1s. Let H be
a k-graph. A tour-trail decomposition T of H is an edge-decomposition of H into
tours and trails. Note that every k-graph has a tour-trail decomposition, namely,
considering each edge of H as a trail (by giving to it an arbitrary ordering). A tour
decomposition is a tour-trail decomposition consisting only of tours. When it comes
to the construction of absorbers, it is of great help to work with remainder subgraphs
which admit tour decompositions. Indeed, it is straightforward to find edge-bijective
homomorphisms between tours and cycles.

To construct absorbers, we will prove that actually any Cpkq
ℓ -divisible k-graph can

be augmented to a new, not-so-large, subgraph which does have such a tour decompo-
sition. This will be done in Section 7, see Lemma 7.1. In this section, we will describe
certain small subgraphs which we will call gadgets. The augmented subgraph which
we mentioned will be built as an edge-disjoint union of gadgets.

6.1. Residual graphs. Consider k P N to be fixed. Now we introduce the terminology
we need to describe the gadgets. Let P “ v1v2 ¨ ¨ ¨ vt be a trail. We define the ends
of P to be the ordered pk ´ 1q-tuples vk´1vk´2 ¨ ¨ ¨ v1 and vt´k`2vt´k`3 ¨ ¨ ¨ vt. We
denote DpP q be the set of ends of P . Let T be a tour-trail decomposition on vertex
set V . We define the residual di-pk ´ 1q-graph DpT q of T to be the multiset tDpP q :
P is a trail in T u. Thus DpT q consists of ordered pk ´ 1q-tuples of vertices in V ,
possibly counted with repetitions.

For i P rk´1s and a vertex v P V , let pT ,ipvq be the number of ordered pk´1q-tuples
in DpT q with v being the ith vertex. We say that T is balanced if, for all v P V and
i P rk ´ 1s,

pT ,ipvq “ pT ,k´ipvq.(6.1)

We omit T from the subscript if it is known from the context.
Observe that if v1 ¨ ¨ ¨ vk´1, vk´1 ¨ ¨ ¨ v1 P DpT q, then there are trails Pi, Pj P T that

can be merged into a trail (if i ‰ j) or tour (if i “ j) with edge set EpPi Y Pjq. Thus
there is another tour-trail decomposition with less trails than T , which is obtained
from T by removing Pi, Pj and adding the tour or trail born from joining Pi and Pj .
We will abuse the notation by calling the resulting tour-trail decomposition by T . This
merging procedure will be indicated by

DpT q “ DpT qztv1 . . . vk´1, vk´1 . . . v1u.

Given a vertex x P V and a k-tuple y“y1 ¨ ¨ ¨ yk, for every iPrks we define

ripy, xq “ y1 ¨ ¨ ¨ yi´1xyi`1 ¨ ¨ ¨ yk , and sipyq “ ty1 ¨ ¨ ¨ yi´1yi`1 ¨ ¨ ¨ yku .
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In words, ripy, xq replaces the ith vertex in y with the vertex x, whilst si simply skips
the ith vertex of y. Moreover, we define the reverse of y as y´1 “ yk ¨ ¨ ¨ y1. Finally,
given a permutation σ of rks we write σpyq for the tuple yσp1q ¨ ¨ ¨ yσpkq.

Given vertices x, x1 P V and pk ´ 1q-tuples y “ y1 ¨ ¨ ¨ yk´1 and y1 “ y1
1 ¨ ¨ ¨ y1

k´1, we
define the following sets of pk ´ 1q-tuples:

á

S
pk´1q

i py, x, x1q “ ty1 . . . yi´1xyi`1 . . . yk´1, yk´1 . . . yi`1x
1yi´1 . . . y1u

“ tripy, xq, pripy, x
1qq´1u and

á

T
pk´1q

i py,y1, x, x1q “
á

S
pk´1q

j py, x, x1q Y
á

S
pk´1q

j py1, x1, xq

“ tripy, xq, ripy
1, x1q, pripy, x

1qq´1, pripy
1, xqq´1u.

For a k-tuple y (instead of a pk ´ 1q-tuple), it will be convenient to consider the

set
á

Spk´1q
i py, x, x1q with the same definition but omitting the last element of the tu-

ple yk. More precisely, given a k-tuple y we define

á

S
pk´1q

i py, x, x1q “
á

S
pk´1q

i pskpyq, x, x1q “ tripskpyq, xq, ripskpyq, x1q´1u.

An analogous definition holds for
á

T
pk´1q

i py,y1, x, x1q, where y and y1 are k-tuples.
Since k will be always clear from the context, we will omit it in the notation.

The two types of C
pkq

ℓ -decomposable k-graphs to be constructed will be Bjpx, x
1q in

Corollary 6.3 (which we call ‘balancer gadgets’) and Tjpy,y
1, x, x1q in Lemma 6.6 (which

we call ‘swapper gadgets’). This last swapper gadget has a trail-tour decomposition

whose residual digraph is exactly
á

Tjpy,y
1, x, x1q. Essentially, the main properties of

the gadgets are:
‚ The rôle of balancer gadgets Bjpx, x

1q is to enable us to adjust pjpxq´pk´1´jpxq

without affecting other vertices in V pHqztx, x1u. Hence, by adding edge-disjoint
copies of balancer gadgets, the resulting tour-trail decomposition T will be
balanced (see Lemma 7.3).

‚ Suppose now T is balanced. Consider x P V pHq and 1 ď j ď k{2, we can now
pair the members of DpT q containing x into pairs py,y1q such that x is the jth
vertex in y and pk ´ 1 ´ jqth vertex in y1. This is possible, as T is balanced.
The swapper gadget Tjpy,y

1, x, x1q will enable us to ‘replace’ x with a new
vertex x1 in both y and y1. By repeated applications of this gadget, this will
allow us to convert T into a tour decomposition (see Lemmas 7.6 and 7.10).

Throughout this section, given a tight cycle C “ v1 ¨ ¨ ¨ vℓ, we often consider a
trail decomposition of C consisting of two trails vσp1q ¨ ¨ ¨ vσpkq and C ´ v1 ¨ ¨ ¨ vk “

v2 ¨ ¨ ¨ vℓv1 ¨ ¨ ¨ vk´1 for some permutation σ of rks. Given a trail decomposition T “

tP1, . . . , Psu, for ease of checking, we often write DpT q “ DpP1q Y ¨ ¨ ¨ Y DpPsq before
merging some of the trails in T , that is, deleting pairs in DpT q of form ty,y´1u.

The next lemma finds many trails of prescribed length which connect any given pair
of ordered pk ´ 1q-tuples. It follows from [11, Lemma 2.3].

Lemma 6.1. Let 1{n ! ρ ! ε ! 1{ℓ, 1{k with k ě 3 and ℓ ě k2´k. Let H be a k-graph

on n vertices with δp2qpHq ě εn. Then, for every two pk ´ 1q-tuples x “ v1 ¨ ¨ ¨ vk´1

and y “ vℓ`1 ¨ ¨ ¨ vℓ`k´1, H contains at least ρnℓ´k`1 trails v1 ¨ ¨ ¨ vℓ`k´1 on ℓ edges,
each of them with no repeated vertices, except possibly those already repeated in x and y.
In particular, if x,y are disjoint, then each of these trails is a tight path of length ℓ.

6.2. Basic gadgets. We now construct a C
pkq

ℓ -decomposable k-graph, which will be
a basic building block of all of the next gadgets.

Lemma 6.2. Let 1{n ! ε ! 1{ℓ, 1{k with k ě 3 and ℓ ě k2´k`1. Let H be a k-graph

on n vertices with δp2qpHq ě εn. Let j P rk ´ 1s. Let x, x1 P V pHq be distinct vertices
and y be k-tuple of V pHq such that Y “ tyi : i P rksztjuu P NHpxq X NHpx1q. Then
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there exists a Cpkq
ℓ -decomposable k-graph G “ Gjpy, x, x

1q in H with |G| “ 2ℓ and a
tour-trail decomposition Tj of G satisfying

DpTjq “
á

Sjpy, x, x
1q Y

á

S1pσ1pyq, x1, xq Y
á

Sj´1pσ2pyq, x, x1q,

where σ1 “ j12 ¨ ¨ ¨ pj ´ 1qpj ` 1q ¨ ¨ ¨ k and σ2 “ 2 ¨ ¨ ¨ k1. Moreover, Grtx, x1u Y Y us “

tx Y Y, x1 Y Y u.

Proof. Orient Y Y x and Y Y x1 into yk ¨ ¨ ¨ yj`1xyj´1 ¨ ¨ ¨ y1 and x1y1 ¨ ¨ ¨ yj´1yj`1 ¨ ¨ ¨ yk.
By Lemma 6.1, there exist two tight cycles of length ℓ,

C1 “ yk ¨ ¨ ¨ yj`1xyj´1 ¨ ¨ ¨ y1vk`1 ¨ ¨ ¨ vℓ,

C2 “ x1y1 ¨ ¨ ¨ yj´1yj`1 ¨ ¨ ¨ ykuk`1 . . . vℓ,

where vi and ui for k ` 1 ď i ď ℓ are new distinct vertices. Let G “ C1 Y C2. Define
the tour-trail decomposition T of C1 Y C2 to be

Tj “

$

’

’

&

’

’

%

xy1 . . . yj´1yj`1 . . . yk,
yk´1 . . . yj`1xyj´1 . . . y1vk`1 . . . vℓyk . . . yj`1xyj´1 . . . y2,

yk . . . yj`1x
1yj´1 . . . y1,

y1 . . . yj´1yj`1 . . . ykuk`1 . . . uℓx
1y1 . . . yj´1yj`1 . . . yk´1

,

/

/

.

/

/

-

.

Hence, DpTjq consists of

DpTjq “

$

’

’

&

’

’

%

yk´1 . . . yj`1yj´1 . . . y1x, y1 . . . yj´1yj`1 . . . yk,
y1 . . . yj´1xyj`1 . . . yk´1, yk . . . yj`1xyj´1 . . . y2,
y2 . . . yj´1x

1yj`1 . . . yk, yk´1 . . . yj`1x
1yj´1 . . . y1,

yk . . . yj`1yj´1 . . . y1, x1y1 . . . yj´1yj`1 . . . yk´1

,

/

/

.

/

/

-

“
á

Sjpy, x, x
1q Y

á

S1pσ1pyq, x1, xq Y
á

Sjpσ2pyq, x, x1q,

where σ1 “ j1 ¨ ¨ ¨ pj ´ 1qpj ` 1q ¨ ¨ ¨ k and σ2 “ 2 ¨ ¨ ¨ k1. ■

6.3. Balancer gadgets. Next, we will use Lemma 6.2 to construct a balancer gad-
get Bj “ Bjpx, x

1q. As mentioned before, the main property of Bjpx, x
1q is to enable us

to increase pT ,ipxq´pT ,k´1´ipxq (and decreasing pT ,1pxq´pT ,k´1pxq) without affecting
other vertices in V ztx, x1u.

Corollary 6.3 (Balancer gadgets). Let 1{n ! ε ! 1{ℓ, 1{k with k ě 3 and ℓ ě

k2 ´ k ` 1. Let H be a k-graph on n vertices with δp2qpHq ě εn. Let j P rk ´ 1szt1u

and let x, x1 P V pHq be distinct. Then there exists a Cpkq
ℓ -decomposable k-graph Bj “

Bjpx, x
1q with |Bj | “ 2pj ´ 1qℓ and a tour-trail decomposition T 1

j of Bj such that for

all i P rk ´ 1s, pT 1
j ,i

pvq ´ pT 1
j ,k´ipvq “ 0 for all v P V pHqztx, x1u and

pT 1
j ,i

pxq ´ pT 1
j ,k´ipxq “ pT 1

j ,k´ipx
1q ´ pT 1

j ,i
px1q “ 1i“j ´ 1i“k´j ´ jp1i“1 ´ 1i“k´1q.

Moreover, when k is even and j “ k{2, pT 1
k{2

,k{2pvq ” 1vPtx,x1u mod 2.

Proof. We will proceed by induction on j. Let y be a k-tuple such that Y “ tyi : i P

rksztjuu P Npxq X Npx1q. By Lemma 6.2, there is a Cpkq
ℓ -decomposable k-graph Gj “

Gjpy, x, x
1q such that

(i) Gjrtx, x
1u Y Y s “ tx Y Y, x1 Y Y u,

(ii) |Gj | “ 2ℓ, and
(iii) there exists a tour-trail decomposition Tj of Gj such that

DpTjq “
á

Sjpy, x, x
1q Y

á

S1pσ1pyq, x1, xq Y
á

Sj´1pσ2pyq, x, x1q,

where σ1 “ j12 ¨ ¨ ¨ pj ´ 1qpj ` 1q ¨ ¨ ¨ k and σ2 “ 2 ¨ ¨ ¨ k1.
Note that, for all i P rk ´ 1s and v P V pHqztx, x1u, we have pTj ,ipvq ´ pTj ,k´ipvq “ 0 as

each of
á

Sjpy, x, x
1q,

á

S1pσ1pyq, x1, xq and
á

Sjpσ2pyq, x, x1q contributes zero. Moreover,

pTj ,ipxq ´ pTj ,k´ipxq “ pTj ,k´ipx
1q ´ pTj ,ipx

1q
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“ p1i“j ´ 1i“k´jq ´ p1i“1 ´ 1i“k´1q ´ p1i“j´1 ´ 1i“k´j`1q .(6.2)

For j “ 2, we set B2 “ G2 and we are done. For j ą 2, there exists Bj´1px, x1q edge-
disjoint from Gj , by our induction hypothesis. Let T 1

j´1 be the corresponding tour-trail

decomposition. Set Bj “ Gj Y Bj´1px, x1q. Clearly |Bj | “ |Gj | ` |Bj´1| “ 2pj ´ 1qℓ.
Note that Bj is C

pkq
ℓ -decomposable and has a tour-trail decomposition T 1

j “ Tj YT 1
j´1.

Together with (6.2), we deduce that T 1
j satisfies the desired properties. The moreover

statement can be verified similarly. ■

6.4. Swapper gadgets. The construction of swapper gadgets requires more steps.
We start with the following proposition.

Proposition 6.4. Let 1{n ! ε ! 1{ℓ, 1{k with k ě 3 and ℓ ě k2 ´ k ` 1. Let H be

a k-graph on n vertices with δp3qpHq ě εn. Let x, x1 P V pHq be distinct vertices and y
be a pk ´ 1q-tuple of V pHq such that tx, x1u Y tyi : 2 ď i ď k ´ 1u is of size k. Then,
there exists a vertex yk P V pHq, a C

pkq

ℓ -decomposable k-graph F1 “ F1py, x, x1q in H
with |F1| “ 3ℓ and a tour-trail decomposition T1 such that

DpT1q “

#

á

S1py, x, x1q Y txx1, xx1u if k “ 3,
á

S1py, x, x1q Y txx1yk . . . y4, y4 . . . ykxx
1u if k ě 4.

Moreover, F1rtx, x1, y2, . . . , yk´1us “ H.

Proof. Let yk P Npxy2 ¨ ¨ ¨ yk´1q XNpx1y2 ¨ ¨ ¨ yk´1q XNpxx1y3 ¨ ¨ ¨ yk´1q, which exists by
our assumption (here for k “ 3 we consider y3 ¨ ¨ ¨ y2 to be empty). By Lemma 6.1,
there exist three tight cycles of length ℓ

C1 “ y2 ¨ ¨ ¨ ykx
1uk`1 ¨ ¨ ¨uℓ,

C2 “ xy2 ¨ ¨ ¨ ykvk`1 ¨ ¨ ¨ vℓ, and

C3 “ y3 ¨ ¨ ¨ ykx
1xwk`1 ¨ ¨ ¨wℓ,

where ui, vi, wi are all distinct new vertices. Let T1 “ C1 YC2 YC3. Consider the trail
decomposition T1 of T1 such that

T1 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

y3 ¨ ¨ ¨ ykx
1uk`1 ¨ ¨ ¨uℓy2 ¨ ¨ ¨ yk,
x1y2 ¨ ¨ ¨ yk,

y2 ¨ ¨ ¨ ykvk`1 ¨ ¨ ¨ vℓxy2 ¨ ¨ ¨ yk´1,
y2 ¨ ¨ ¨ ykx,

y4 ¨ ¨ ¨ ykx
1xwk`1 ¨ ¨ ¨wℓy3 ¨ ¨ ¨ ykx

1,
y3 ¨ ¨ ¨ ykxx

1

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

and so

DpT1q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x1yk ¨ ¨ ¨ y3, y2 ¨ ¨ ¨ yk,
yk´1 ¨ ¨ ¨ y2x

1, y2 ¨ ¨ ¨ yk,
yk ¨ ¨ ¨ y2 xy2 ¨ ¨ ¨ yk´1,
yk ¨ ¨ ¨ y2, y3 ¨ ¨ ¨ ykx,

xx1yk ¨ ¨ ¨ y4, y3 ¨ ¨ ¨ ykx
1,

xyk ¨ ¨ ¨ y3, y4 ¨ ¨ ¨ ykxx
1

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

as required. ■

We construct a swapper gadget of the form T1py,y1, x, x1q in the next proposition.

Proposition 6.5 (Swapper gadget – case j “ 1). Let 1{n ! ε ! 1{ℓ, 1{k such that

k ě 3 and ℓ ě k2´k`1. Let H be a k-graph on n vertices with δp3qpHq ě εn. Consider
vertices x, x1 P V pHq and pk´1q-tuples y, y1 of V pHq such that both tx, x1u Y tyi : 2 ď

i ď k ´ 1u and tx, x1u Y ty1
i : 2 ď i ď k ´ 1u are of size k. Then there exists a Cpkq

ℓ -
decomposable k-graph T1 “ T1py,y1, x, x1q in H a tour-trail decomposition T1 of T1

such that
(i) T1rtx, x1u Y ty1, . . . yk´1u Y ty1

1, . . . , y
1
k´1us “ H and |T1| “ 2ℓk and
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(ii) DpT1q “
á

T1py,y1, x, x1q.

Proof. We apply Proposition 6.4 twice, the first time for x, x1 and y as input and
the second time with x1, x and y1 as input (we exchange the rôles of x and x1). This
yields vertices yk, y

1
k P V pHq and two C

pkq

ℓ -decomposable k-graphs F “ F1py, x, x1q

and F 1 “ F1py1, x1, xq such that
(a1) V pF q X V pF 1q Ď tx, x1u Y tyi, y

1
i : i P rk ´ 1su and |F | “ |F 1| “ 3ℓ and

(a2) there exists a tour-trail decomposition T of F Y F 1 such that

DpT q “ T1py,y1, x1, xq Y txx1yk ¨ ¨ ¨ y4, y4 ¨ ¨ ¨ ykxx
1, x1xy1

k ¨ ¨ ¨ y1
4, y1

4 ¨ ¨ ¨ y1
kx

1xu,

where, for k “ 3, we interpret the strings yk ¨ ¨ ¨ y4 and y1
k ¨ ¨ ¨ y1

4 to be empty.

If k “ 3, then DpT q “ T1py,y1, x1, xqYtx1x, x1x, xx1, xx1u “ T1py,y1, x1, xq, thus we are
done. So we may assume that k ě 4. Note that if we have yi “ y1

i for all i P t4, . . . , ku,
then DpT q is as desired. Thus, our aim is to ‘replace’ yi, y

1
i with a new vertex zi, for

each i “ t4, . . . , ku. We do this in turns, as follows. For each i P t4, . . . , ku, let

zi P Npxx1z4 ¨ ¨ ¨ zi´1yi ¨ ¨ ¨ ykq X Npxx1z4 ¨ ¨ ¨ zi´1y
1
i ¨ ¨ ¨ y1

kq

be a new vertex (here we consider z4 ¨ ¨ ¨ z3 to be empty). Consider the two ordered
edges zi ¨ ¨ ¨ z4xx

1yk ¨ ¨ ¨ yi and zi . . . z4x
1xy1

k ¨ ¨ ¨ y1
i and apply Lemma 6.1 to obtain two

tight cycles of length ℓ

Ci “ zi ¨ ¨ ¨ z4xx
1yk ¨ ¨ ¨ yiv

i
k`1 ¨ ¨ ¨ viℓ and Di “ zi ¨ ¨ ¨ z4x

1xy1
k ¨ ¨ ¨ y1

iw
i
k`1 ¨ ¨ ¨wi

ℓ

such that vij , w
i
j are new vertices. Define a tour-trail decomposition T i of Ci YDi such

that

T i “

$

’

’

&

’

’

%

zi´1 ¨ ¨ ¨ z4xx
1yk ¨ ¨ ¨ yiv

i
k`1 ¨ ¨ ¨ viℓzi ¨ ¨ ¨ z4xx

1yk ¨ ¨ ¨ yi`1,
zi ¨ ¨ ¨ z4x

1xyk ¨ ¨ ¨ yi,
zi´1 ¨ ¨ ¨ z4x

1xy1
k ¨ ¨ ¨ y1

iw
i
k`1 ¨ ¨ ¨wi

ℓzi ¨ ¨ ¨ z4x
1xy1

k ¨ ¨ ¨ y1
i`1

zi ¨ ¨ ¨ z4xx
1y1

k ¨ ¨ ¨ y1
i

,

/

/

.

/

/

-

.

Note that

DpT iq “

$

’

’

&

’

’

%

yi . . . ykx
1xz4 . . . zi´1, zi . . . z4xx

1yk . . . yi`1,
yi`1 . . . ykxx

1z4 . . . zi, zi´1 . . . z4x
1xyk . . . yi,

y1
i . . . y

1
kxx

1z4 . . . zi´1, zi . . . z4x
1xy1

k . . . y
1
i`1,

y1
i`1 . . . y

1
kx

1xz4 . . . zi, zi´1 . . . z4xx
1y1

k . . . y
1
i

,

/

/

.

/

/

-

“

$

’

’

&

’

’

%

yi . . . ykx
1xz4 . . . zi´1,

y1
i . . . y

1
kxx

1z4 . . . zi´1,
zi´1 . . . z4x

1xyk . . . yi,
zi´1 . . . z4xx

1y1
k . . . y

1
i

,

/

/

.

/

/

-

Y

$

’

’

&

’

’

%

zi . . . z4xx
1yk . . . yi`1,

zi . . . z4x
1xy1

k . . . y
1
i`1

yi`1 . . . ykxx
1z4 . . . zi,

y1
i`1 . . . y

1
kx

1xz4 . . . zi

,

/

/

.

/

/

-

.

When i “ k, then the second set can be simplified to an empty set. Note that
DpT 4q, ¨ ¨ ¨ , DpT kq forms a ‘telescoping’ set of residual di-pk ´ 1q-graphs, so we de-
duce that

D

˜

ď

4ďiďk

T i

¸

“ txx1y1
k ¨ ¨ ¨ y1

4, y1
4 ¨ ¨ ¨ y1

kxx
1, x1xyk ¨ ¨ ¨ y4, y4 ¨ ¨ ¨ ykx

1xu.

We are done by setting T1 “ F Y F 1 Y
Ť

4ďiďkpCi Y Diq and T1 “ T Y
Ť

4ďiďk T i. ■

We can now describe the general version of the swapper gadget Tj , for all j P rk´1s.

Lemma 6.6 (Swapper gadget – general case). Let 1{n ! ε ! 1{ℓ, 1{k such that k ě 3

and ℓ ě k2 ´k`1. Let H be a k-graph on n vertices with δp3qpHq ě εn. Let j P rk´1s

and consider distinct vertices x, x1 P V pHq and pk ´ 1q-tuples y, y1 of V pHq such that
both tx, x1u Y tyi : i P rk ´ 1sztjuu and tx, x1u Y ty1

i : i P rk ´ 1sztjuu are of size k.
Then there exists a Cpkq

ℓ -decomposable k-graph Tj “ Tjpy,y
1, x, x1q and a tour-trail

decomposition Tj of Tj such that
(i) Tjrtx, x

1u Y ty1, . . . yk´1u Y ty1
1, . . . , y

1
k´1us “ H and |Tj | ď 3jℓk and
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(ii) DpTjq “
á

Tjpy,y
1, x, x1q.

Proof. We proceed by induction on j. Note that Proposition 6.5 implies the case when
j “ 1, so we may assume that j ě 2. Let

yk P Npxy1 . . . yj´1yj`1 . . . yk´1q X Npx1y1 . . . yj´1yj`1 . . . yk´1q

be a new vertex. By Lemma 6.2, there exists a Cpkq
ℓ -decomposable k-graph Gj “

Gjpy, x, x
1q with |Gj | “ 2ℓ and a tour-trail decomposition Gj of Gj satisfying

DpGjq “
á

Sjpy, x, x
1q Y

á

S1pσ1pyq, x1, xq Y
á

Sj´1pσ2pyq, x1, xq,

where σ1 “ j12 . . . pj ´ 1qpj ` 1q . . . k and σ2 “ 2 . . . k1. Analogously, there is a Cpkq
ℓ -

decomposable k-graph G1
j “ G1

jpy
1, x1, xq with |G1

j | “ 2ℓ and a tour-trail decomposi-

tion G1
j of Gj satisfying

DpG1
jq “

á

Sjpy
1, x1, xq Y

á

S1pσ1py1q, x, x1q Y
á

Sj´1pσ2py1q, x, x1q.

Note that

|Gj Y G1
j | “ 4ℓ(6.3)

and

(6.4)

DpGjqYDpG1
jq “

á

Tjpy,y
1, x, x1qY

á

T1pσ1pyq, σ1py1q, x, x1qY
á

Tj´1pσ2pyq, σ2py1q, x, x1q.

Due to the induction hypothesis, there are Cpkq
ℓ -decomposable k-graphs

T1 “ T1pσ1pyq, σ1py1q, x1, xq and Tj´1 “ Tj´1pσ2pyq, σ2py1q, x1, xq

and a tour-trail decomposition T ˚
j of T1 Y Tj´1 such that their union T ˚

j “ T1 Y Tj´1

satisfies
(i1) T ˚

j rtx, x1u Y ty1, . . . , yk´1u Y ty1, . . . , yk´1us “ H and |T ˚
j | ď 2 ¨ 3j´1ℓk,

(ii1) DpT ˚
j q “

á

T1pσ1pyq, σ1py1q, x1, xq Y
á

Tj´1pσ2pyq, σ2py1q, x1, xq

We set Tj “ Gj Y G1
j Y T ˚

j and Tj “ Gj Y G1
j Y T ˚

j . By (6.3) and (i1), we deduce that

|Tj | ď 4ℓ ` 2 ¨ 3j´1ℓk ď 3jℓk.

Moreover (6.4) and (ii1) imply that DpTjq “
á

Tjpy,y
1, x, x1q as required. ■

7. Transformers II: Tour-trail decompositions

Here, we use the gadgets constructed in the previous section to prove that any Cpkq
ℓ -

divisible k-graph can be augmented to a new, not-too-large, subgraph which has a
tour decomposition. That is the content of the next crucial lemma, whose proof will
be given at the end of this section. Note that we only require degGpvq is divisible by k
for all vertices v P V pGq instead of Cpkq

ℓ -divisible.

Lemma 7.1. Let 1{n ! ε ! ρ, 1{ℓ, 1{k with k ě 3 and ℓ ě k2 ´ k ` 1. Let H be

a k-graph on n vertices with δp3qpHq ě εn. Let G be a k-graph with V pGq Ď V pHq

and m “ |V pGq| ď εn1{kpk`1q such that degGpvq is divisible by k for all v P V pGq.
Then H ´ G contains a C

pkq

ℓ -decomposable subgraph J such that G Y J has a tour
decomposition, JrV pGqs “ H and |G Y J | ď 3k`2k4ℓ2mk`1. Moreover, if G1 has an
edge-bijective homomorphism to G with V pG1q Ď V pHqzV pGq, then we have H´G´G1

contains a subgraph J 1 such that G1 Y J 1 is edge-bijective homomorphic to G Y J ,
J 1rV pG1qs “ H and V pG Y Jq X V pG1 Y J 1q “ H.

As described before, the lemma will be proven by starting with any tour-trail de-
composition of G, and adding gadgets to it repeatedly. We will first use balancer
gadgets to make sure we have a balanced tour-trail decomposition, and then we will
use swapper gadgets to eliminate any remaining trails one by one.
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7.1. Basic properties. We begin by stating basic properties of any tour-trail decom-
position. Recall that pT ,ipvq is the number of (directed) edges of T where v is the ith
vertex.

Proposition 7.2. Let H be a k-graph such that degpvq is divisible by k for every vertex
v P V pHq. Let T be a tour-trail decomposition of H. Then, for each v P V pHq,

ÿ

iPrk´1s

ipT ,ipvq ” 0 mod k.

Moreover, if k is even and T is balanced, then pT ,k{2pvq is even for all v P V pHq.

Proof. Note that only trails in T contribute to
ř

iPrk´1s ipT ,ipxq. Moreover, for any

tour C, we have degCpvq ” 0 mod k for all v P V pHq. Hence by deleting all tours in T
and their corresponding edges in H, we may assume that T consists of trails only.

Fix v P V pHq. Let T “ v1 . . . vt be a trail in T and consider I Ď rts such that vi “ v.
Let

ϕT pvq “
ÿ

iPrt´k`1s

`

1v“vi ` 1v“vi`1 ` ¨ ¨ ¨ ` 1v“vi`k´1

˘

.

Observe that every time the trail ‘pass through v’ it increases ϕT pvq by k except if it
is at the beginning or the end of T . More precisely, it is not hard to check that

ϕT pvq “ k|I X rk, t ´ ks| `
ÿ

iPrk´1sYrt´k`1,ts

`

1v“vi ` ¨ ¨ ¨ ` 1v“vi`k´1

˘

”
ÿ

iPrk´1s

ipi,T pvq mod k.

On the other hand, it is easy to see that ϕT pvq “
ř

ePT 1vPe. Thus, summing over all
trails in T , we get

0 ” degHpvq “
ÿ

TPT
ϕT pvq ”

ÿ

iPrk´1s

ipi,T pvq mod k.

Furthermore, suppose that k is even and T is balanced (see definition in (6.1)). Then
ÿ

iPrk´1s

ipT ,ipvq “
ÿ

iPrk{2´1s

kpT ,ipvq ` pk{2qpT ,k{2pvq.

Since this is equivalent to 0 mod k, we get that pT ,k{2pvq is even. ■

7.2. Balancing. Recall that any k-graph admits a trail decomposition, by orienting
edges arbitrarily. We begin by using balancer gadgets (as given by Corollary 6.3)
repeatedly to obtain a balanced tour-trail decomposition of G.

Lemma 7.3. Let 1{n ! ε ! ρ, 1{ℓ, 1{k with k ě 3 and ℓ ě k2 ´ k ` 1. Let H

be a k-graph on n vertices and δp3qpHq ě εn. Let G be a k-graph with V pGq Ď

V pHq, m “ |V pGq| ď εn1{k2 and such that degGpvq is divisible by k for all v P V pGq.
Then H ´G contains a C

pkq

ℓ -decomposable J such that GY J has a balanced tour-trail
decomposition T ˚, JrV pGqs “ H and |G Y J | ď ℓmk`1.

Proof. Let T0 be an arbitrary tour-trail decomposition of G. The following claim forms
the basis of our proof and allows us to adjust the values of pT0,k{2pvq.

Claim 7.4. Suppose k is even. Then H´G contains a C
pkq

ℓ -divisible subgraph Jk{2

with |Jk{2|ďkℓm{2 and Jk{2rV pGqs “ H such that there exists a tour-trail decomposi-
tion Tk{2 of Jk{2 satisfying, for all v P V pHq,

pTk{2,k{2pvq ” 1pT0,k{2pvq is odd mod 2,

|pTk{2,1pvq ´ pTk{2,k´1pvq| “ pk{2q1pT0,k{2pvq is odd,

pTk{2,ipvq ´ pTk{2,k´ipvq “ 0 if i P r2, k ´ 2s.
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Proof of claim. Note that
ř

vPV pHq pT0,k{2pvq “ |DpT0q| is twice the number of trails

in DpT0q. Without loss of generality, let v1, . . . , v2s P V pHq be the vertices in V pGq

such that pT0,k{2pvjq is odd. For each j P rss, we apply Corollary 6.3 and obtain edge-
disjoint balancer gadgets Bk{2pv2j´1, v2jq in H ´ G. Let Jk{2 be the union of these
balancer gadgets. Clearly, |Jk{2| ď skℓ{2 ď kℓm{2. Let Tk{2 be the tour-trail decom-
position of Jk{2, which is the union of the corresponding tour-trail decompositions of
each Bk{2pv2j´1, v2jq. For all v P V pHq, we have pTk{2,k{2pvq ” 1 mod 2 if and only

if v P tv1, . . . , v2su, which proves the first required property. We can deduce the other
two properties using the properties of the corresponding tour-trail decomposition of
each Bk{2pv2j´1, v2jq. This proves the claim. –

If k is even, then let Jk{2 be given by Claim 7.4, otherwise just set Jk{2 “ H. The
next claim allows us to adjust the values of pT0,ipvq for 2 ď i ă k{2.

Claim 7.5. For each 2 ď i ă k{2, H ´ G ´ Jk{2 contains a C
pkq

ℓ -divisible subgraph Ji
such that there exists a tour-trail decomposition Ti of Ji satisfying, for all v P V pHq

and i1 P rk ´ 1s,

pTi,i1pvq ´ pTi,k´i1pvq “

$

’

&

’

%

pT0,k´i1pvq ´ pT0,i1pvq if i1 P ti, k ´ iu,

´ippT0,k´i1pvq ´ pT0,i1pvqq if i1 P t1, k ´ 1u,

0 otherwise.

Moreover, |Ji| ď 4iℓ
`

m
k

˘

, JirV pGqs “ H and the Ji’s are edge-disjoint.

Proof of claim. Let 2 ď i ă k{2. Suppose that we have already constructed subgraphs
J2, . . . , Ji´1. We now construct Ji as follows. Let H

1 “ H ´ G ´ Jk{2 ´
Ť

i1Pr2,i´1s Ji1 .

For all i1 P rk ´ 1s, note that
ř

vPV pHq pT0,i1pvq “ |DpT0q| and so

ÿ

vPV pHq

ppT0,ipvq ´ pT0,k´ipvqq “ 0.

Define a multi-digraph Hi on V pHq such that, for all v P V pHq,

d´
Hi

pvq “ maxtpT0,ipvq ´ pT0,k´ipvq, 0u and d`
Hi

pvq “ maxtpT0,k´ipvq ´ pT0,ipvq, 0u.

Note that Hi can be constructed greedily. Note that |Hi| “ |DpT0q| is twice the number
of trails in T0, so |Hi| ď 2

`

m
k

˘

. For each directed edge xy P Hi, we apply Corollary 6.3
and obtain edge-disjoint balancer gadgets Bipx, yq in H 1. Let Ji be the the union of
these balancer gadgets. Clearly, |Ji| ď 2iℓ|Hi| ď 4iℓ

`

m
k

˘

. Let Ti be the tour-trail
decomposition of Ji, which is the union of the corresponding tour-trail decompositions
of each Bipx, yq. It is straightforward to check that Ti has the desired properties, which
proves the claim. –

For each 2 ď i ă k{2, let Ji be given by Claim 7.5. Together with Jk{2, we have then

edge-disjoint J2, . . . , Jtk{2u for any k. Let H˚ “ H ´ G ´
Ť

2ďiďtk{2u Ji and set T 1 “

T0Y
Ť

2ďiďtk{2u Ti. Recall that
ř

iPrk´1s pT0,ipvq is the number of pk´1q-tuples in DpT0q

containing v, so
ř

iPrk´1s pT0,ipvq ď 2
`

m
k

˘

. For i P t2, . . . , k ´ 2u and v P V pHq, we have

pT 1,ipvq “ pT 1,k´ipvq,(7.1)

pT 1,k{2pvq ” 0 mod 2 if k is even, and(7.2)

|pT 1,1pvq ´ pT 1,k´1pvq| ď
ÿ

iPrk´1s

ipT0,ipvq ď 2pk ´ 1q

ˆ

m

k

˙

.(7.3)

Moreover, pT 1,1pvq “ pT 1,k´1pvq for all v P V pHqzV pGq.



CYCLE DECOMPOSITIONS IN k-UNIFORM HYPERGRAPHS 19

We now balance pT 1,1pvq and pT 1,k´1pvq as follows. Note that rk{2s ´1 is the largest
integer which is strictly less than k{2. We have

pT 1,1pvq ´ pT 1,k´1pvq
(7.1)
“ pT 1,1pvq ´ pT 1,k´1pvq `

ÿ

2ďiďrk{2s´1

i
`

pT 1,ipvq ´ pT 1,k´ipvq
˘

(7.2)
”

ÿ

1ďiďk´1

ipT 1,ipvq
Prop. 7.2

” 0 pmod kq.

For each v P V pGq, let

bpvq “ ppT 1,1pvq ´ pT 1,k´1pvqq{k,

so bpvq P Z. Define (greedily) a multi-digraph H1 on V pHq such that, for all v P V pHq,

d´
H1

pvq “ maxtbpvq, 0u and d`
H1

pvq “ maxt´bpvq, 0u.

By (7.3), ∆˘pH1q ď 2
`

m
k

˘

and |H1| ď m
`

m
k

˘

. For each directed edge xy P H1, we apply
Corollary 6.3 to obtain edge-disjoint balancer gadgets Bk´1px, yq in H˚. We call J1
the union of these balancer gadgets. Clearly, |J1| ď 2pk ´ 1qℓ|H1| ď 2pk ´ 1qℓm

`

m
k

˘

.
Let J “

Ť

1ďiďtk{2u Ji. Note that

|G Y J | ď

ˆ

m

k

˙

` 2pk ´ 1qℓm

ˆ

m

k

˙

`
ÿ

2ďiďtk{2u

4iℓ

ˆ

m

k

˙

ď 2kℓm

ˆ

m

k

˙

ď ℓmk`1.

Let T1 be the tour-trail decomposition of J1, which is the union of the corresponding
tour-trail decompositions of each Bk´1px, yq. Note that given a Bk´1px, yq and its
tour-trail decomposition T “ T px, yq, we have, for all v P V pHq and 2 ď i ď k ´ 2,

pT ,1pvq ´ pT ,k´1pvq “ ´kp1v“x ´ 1v“yq and pT ,ipvq ´ pT ,k´ipvq “ 0 .

Hence T ˚ “ T1 Y T 1 is a balanced tour-trail decomposition of J Y G, as required. ■

7.3. Focusing. The following lemma shows that all the residual DpT ˚q can be moved
onto a set of fixed k ´ 1 vertices.

Lemma 7.6. Let 1{n ! ε ! 1{ℓ, 1{k with k ě 3 and ℓ ě k2 ´ k ` 1. Let H be

a k-graph on n vertices and δp3qpHq ě εn. Let G be a k-graph with V pGq Ď V pHq and

m “ |V pGq| ď εn1{k2{2 such that degGpvq is divisible by k for all vertices v P V pGq.
Suppose that m is prime and |G| ă m{k. Suppose that G has a balanced tour-trail
decomposition T . Let z1, . . . , zk´1 P V pHqzV pGq be distinct vertices. Then H ´ G
contains a C

pkq

ℓ -decomposable J˚ such that |J˚| ď 3kkℓm, J˚rV pGqs “ H and G Y J˚

has a balanced tour-trail decomposition T ˚ satisfying, for all i P rk´1s, and v P V pHq,
pT ˚,ipvq “ 0 unless v P tzi, zk´iu and |DpT ˚q| ď 3m.

We first outline the proof of Lemma 7.6. Take z1, . . . , zk´1 P V distinct vertices.
Recall the definition of rj at the beginning of Section 6. For 1 ď i ď tk{2u, define the

functions ζi, ζ̄i : V
k´1 Ñ V k´1 be such that, for a “ a1 ¨ ¨ ¨ ak´1 P V k´1,

ζipaq “ rk´ipripa, ziq, zk´iq “ a1 ¨ ¨ ¨ ai´1ziai`1 ¨ ¨ ¨ ak´i´1zk´iak´i`1 ¨ ¨ ¨ ak´1 and

ζ̄ipaq “ rk´ipripa, zk´iq, ziq “ a1 ¨ ¨ ¨ ai´1zk´iai`1 ¨ ¨ ¨ ak´i´1ziak´i`1 ¨ ¨ ¨ ak´1.

That is, ζi replaces the ith and pk ´ iqth vertices with the vertices zi and zk´i, re-
spectively, whereas ζ̄i replaces the ith and pk ´ iqth vertices with vertices zk´i and zi,
respectively. If k is even and i “ k{2, then both ζk{2 and ζ̄k{2 replace the pk{2qth

vertex with zk{2, this is ζpaq “ ζ̄paq “ rk{2pa, zk{2q.

We say that a tour-trail decomposition T 1 is an i-convert of T if DpT q can be
partitioned into D1 and D2 of equal size such that DpT 1q “ ζipD1q Y ζ̄ipD2q. Note
that the definitions of ζi, ζ̄i and i-convert depend on a choice of z1, . . . , zk´1. However,
such choice will be always clear from the context, so we omit it on the notation.
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Let T0 be a balanced tour-trail decomposition of G. Our aim is to construct tour-
trail decompositions T1, . . . , Ttk{2u such that Ti is an i-convert of Ti´1. Notice that
Ttk{2u will be the desired tour-trail decomposition.

We will also need the following notation. Let T be a tour-trail decomposition
and 1 ď i ă k{2. Define AipT q to be the multidigraph on V pHq such that every ordered
tuple v1 ¨ ¨ ¨ vk´1 in DpT q corresponds to a distinct directed edge vivk´i in AipT q.

The following is immediate from our definition of i-convert and AjpT q.

Proposition 7.7. Let k ě 3 and 1 ď i ă k{2. Let V be a set of vertices, and
let z1, . . . , zk´1 P V be distinct vertices. Let T and T 1 be tour-trail decompositions of
two (not necessarily of the same) subgraphs in V . Suppose T 1 is an i-convert of T .
Then AjpT 1q “ AjpT q for all 1 ď j ă k{2 such that j ‰ i.

The next lemma shows that we can always get a tour-trail decomposition such
that AipT q is strongly connected for all 1 ď i ă k{2 and spans V pGq. The proof is
simple and follows by greedily adding new arcs to AipT q.

Lemma 7.8. Let 1{n ! ε ! 1{ℓ, 1{k with k ě 3 and ℓ ě k2 ´ k ` 1. Let H be

a k-graph on n vertices with δp3qpHq ě εn. Let U Ď V pHq with |U | “ m ď εn and m
is a prime number. Then there exists a C

pkq

ℓ -decomposable J0 such that |J0| “ ℓm,
J0rU s “ H, J0 has a balanced tour-trail decomposition T0 satisfying V pDpT0qq Ď U
and, for all 1 ď i ă k{2, AipT0q is a strongly connected multidigraph which spans U
and |AipT0q| “ 2m.

Proof. Let u1, . . . , um be an enumeration of U . Consider j P rms. We apply Lemma 6.1
to obtain a copy Cj of C

pkq

ℓ with V pCjq “ uj`1 ¨ ¨ ¨uj`k´1wj,k ¨ ¨ ¨wj,ℓ, where wj,j1 are
new vertices. For its trail decomposition Tj we consider Cj to be a trail

uj`1 ¨ ¨ ¨uj`k´1wj,k ¨ ¨ ¨wj,ℓuj`1 ¨ ¨ ¨uj`k´1.

Then uj`iuj`k´i, uj`k´iuj`i P AipTjq for all 1 ď i ă k{2. Let J0 “
Ť

jPrms Cj and

T0 “
Ť

jPrms Tj (without simplification). Note that |J0| “ ℓm as each Cj has ℓ edges.

Note that

|AipT0q| “
ÿ

jPrms

|AipTjq| “
ÿ

jPrms

|DpTjq| “ 2m.

Recall that m is prime, so AipT0q is connected and spans U for all 1 ď i ă k{2. ■

We are now ready to prove Lemma 7.6.

Proof of Lemma 7.6. Apply Lemma 7.8 with U “ V pGq and H “ Hztz1, . . . , zk´1u,
we obtain a Cpkq

ℓ -decomposable graph J0 Ď H ´ G such that

|J0| “ ℓm,(7.4)

and J0 has a balanced tour-trail decomposition T0 such that, for all 1 ď i ă k{2, AipT0q

is a connected mutlidigraph which spans V pGq.
Let G˚

0 “ GY J0 and T ˚
0 “ T Y T0, considering all trails, without doing any further

simplification even if it is possible to do so. For all 1 ď i ă k{2, Ai “ AipT ˚
0 q. Thus Ai

is a connected mutlidigraph spanning V pGq. Observe that since T ˚
0 is balanced, then Ai

is Eulerian. Let s be such that |DpT ˚
0 q| “ 2s. Note that

2s “ |Ai| “ |DpT ˚
0 q| “ 2|G| ` |AipT0q| ď 2m{k ` 2m ď 3m.(7.5)

Claim 7.9. There exist edge-disjoint k-graphs J0, . . . , Jtk{2u in H ´ G such that

(i) each Ji is C
pkq

ℓ -decomposable and |Ji| ď 2 ¨ 3ikℓs,
(ii) G Y J0 Y

Ť

jPris Jj has a balanced tour-trail decomposition T ˚
i , and

(iii) T ˚
i is an i-convert of T ˚

i´1.
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We first show that the claim implies the lemma. Set J˚ “ J0 Y
Ť

jPrtk{2us Jj and

set T ˚ “ T ˚
tk{2u

. Clearly, J˚ is Cpkq
ℓ -decomposable since each Jj is. Note that

|J˚| ď |J0| `
ÿ

iPrtk{2us

|Ji|
(7.4),piq

ď ℓm ` 2kℓs
ÿ

iPrtk{2us

3i
(7.5)
ď 3kkℓm.

Since T ˚ is balanced by (ii), (iii) implies that each v1 ¨ ¨ ¨ vk´1 P DpT ˚q satisfies

v1 ¨ ¨ ¨ vk´1 P tz1, zk´1u ˆ tz2, zk´2u ˆ ¨ ¨ ¨ ˆ tzk´1, z1u.

Hence, for all i P rk ´ 1s and v P V pHq, pT ˚,ipvq “ 0 unless v P tzi, zk´iu as desired.
Also |DpT ˚q| “ |DpT q| “ 2s ď 3m by (iii) and (7.5). Therefore to complete the proof,
it remains to prove Claim 7.9.

Proof of claim. Suppose that we have already found J0, . . . , Ji´1 and we now con-
struct Ji as follows.

Case 1: i “ k{2. We first prove the case i “ k{2 as it is simpler and illustrates some
of the key ideas. If we are in this case, then k is even and, by Proposition 7.2, we
have pTk{2´1,k{2pvq ” 0 pmod 2q for all v P V pHq. Also |DpT ˚

k{2´1q| “ |T ˚
0 | “ 2s. Take

an arbitrary enumeration of of DpT ˚
k{2´1q into b1, . . . ,b2s such that b2j´1,k{2 “ b2j,k{2

for all j P rss, where bj “ bj,1 ¨ ¨ ¨ bj,k´1 (here we use the fact that pTk{2´1,k{2pvq is even).

For every j P rss, let

b˚
j “ b2j´1,k{2 “ b2j,k{2.

Apply Lemma 6.6 to obtain a swapper gadget T j
k{2 “ Tk{2pb2j´1,b

´1
2j , zk{2, b

˚
j q with a

tour-trail decomposition T j such that

DpT jq “
á

Tk{2pb2j´1,b
´1
2j , zk{2, b

˚
j q “ tb´1

2j´1,b
´1
2j , ζk{2pb2j´1q, ζk{2pb2jqu.

We may further assume that these T j are edge-disjoint.
Let Jk{2 be the union of these swapper gadgets and Tk{2 be the union of their tour-

trail decompositions, together with Tk{2´1. Note that |Jk{2| ď 3k{2ℓks, and since

DpT ˚
k{2q “ DpT ˚

k{2´1q Y
ď

jPrss

tb´1
2j´1,b

´1
2j , ζk{2pb2j´1q, ζk{2pb2jqu

“ tbj ,b
´1
j , ζk{2pbjq : j P r2ssu “ tζk{2pbjq : j P r2ssu,

we deduce Tk{2 is a pk{2q-convert of Tk{2´1, as required.

Case 2: i ă k{2. By (iii) and Proposition 7.7, we deduce that AipTi´1q “ Ai and so, it is
an Eulerian multidigraph. Hence, there exists an enumeration of DpTiq as b1, . . . ,b2s,
which corresponds to an Eulerian tour in Ai. Let bj “ bj,1 ¨ ¨ ¨ bj,k´1, so we have bj,k´i “

bj`1,i for all j P r2ss.
We now replace the pk ´ iqth vertex in each b2j´1 with zi and the ith vertex in

each b2j with zi, as follows. For every j P rss let

b˚
j “ b2j´1,k´i “ b2j,i.

Apply Lemma 6.6 to obtain a swapper gadget T j “ Tipb2j ,b
´1
2j´1, zi, b

˚
j , q with a tour-

trail T j such that

DpT jq “
á

Tipb2j ,b
´1
2j´1, zi, b

˚
j q “ tb´1

2j´1,b
´1
2j , rk´ipb2j´1, ziq, ripb2j , ziqu.

Recall that ripb2j , ziq and rk´ipb2j´1, ziq correspond to the tuples b2j and b2j´1 re-
placing b˚

j with zi (see definition at the beginning of Section 6). Note that

D
`

Ti Y
ď

jPrss

T j
˘

“
ď

jPr2ss

tb2j´1,b2j ,b
´1
2j´1,b

´1
2j , rk´ipb2j´1, ziq, ripb2j , ziqu
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“
ď

jPrss

trk´ipb2j´1, ziq, ripb2j , ziqu.

Equivalently, DpTi Y
Ť

jPr2ss T jq is obtained from DpTiq by corresponds to replacing

the pk ´ iqth vertex in b2j´1 and ith vertex in b2j with zi.
By considering the pairs of tuples ripb2j , ziq, rk´ipb2j`1, ziq, a similar argument

implies that we can replace the ith vertex in rk´ipb2j`1, ziq and pk ´ iqth vertex
in ripb2j , ziq with zk´i.

Let Ji be the union of these swapper gadgets and Ti be the union of Ti´1 and the
corresponding tour-trail decomposition. Notice that Ti is an i-convert of Ti´1 and
that |Ji| ď 3jℓk ¨ 2s. This finishes the proof of Claim 7.9. –

As discussed, this finishes the proof of the lemma. ■

7.4. Untangle the last arcs. Observe that Lemma 7.6 in the previous subsection
we found a trail-tour decomposition in which all arcs lie in a small set of k ´ 1 ver-
tices z1, . . . , zk´1. Here we show how to ‘untangle’ those arcs in such a way that all
‘cancel’ each other. After this cancelling, the trails from the tour-trail decomposition
are removed and we obtain a tour decomposition.

Lemma 7.10. Let 1{n ! ε ! 1{ℓ, 1{k with k ě 3 and ℓ ě k2 ´ k ` 1. Let H be

a k-graph on n vertices with δp3qpHq ě εn. Let G be a k-graph with V pGq Ď V pHq

and |V pGq| ď εn. Let z1, . . . , zk´1 P V pGq be distinct vertices. Suppose that G has a
balanced tour-trail decomposition T1 such that |DpT1q| ď 5m and, for all i P rk ´ 1s

and v P V pHq, pT1,ipvq “ 0 unless v P tzi, zk´iu. Then H ´ G contains a Cpkq
ℓ -

decomposable subgraph J such that |J | ď k3ℓ|DpT1q|, JrV pGqs “ H, and G Y J has a
tour decomposition.

Proof. We simplify T1 as much as possible. Let |DpT1q| “ 2s. Since T1 is balanced, we
have, for all i P rk ´ 1s,

pT1,ipziq “ pT1,ipzk´iq “

#

s if i ‰ k{2,

2s if i “ k{2.
(7.6)

We now colour b P DpT1q red if b starts at z1 (i.e. the first vertex of b is z1),
and blue otherwise. So there are s red pk ´ 1q-tuples and s blue pk ´ 1q-tuples
in DpT1q. Ideally, we would like to transform all red pk´1q-tuples to z1 ¨ ¨ ¨ zk´1 and all
blue pk´1q-tuples to zk´1 ¨ ¨ ¨ z1 (so that they would cancel out). A pk´1q-tuple is i-bad
if zi is at the “wrong place”. More precisely, an i-bad red pk ´ 1q-tuple (and an i-
bad blue pk ´ 1q-tuple) will be of form v1 ¨ ¨ ¨ vi´1zk´ivi`1 ¨ ¨ ¨ vk´i´1zivk´i`1 ¨ ¨ ¨ vk´1

(and v1 ¨ ¨ ¨ vi´1zivi`1 ¨ ¨ ¨ vk´i´1zk´ivk´i`1 ¨ ¨ ¨ vk´1, respectively), where tvj , vk´ju “

tzj , zk´ju for all j P rk ´ 1sztiu. Note that no pk ´ 1q-tuple is 1-bad, pk ´ 1q-bad
or k{2-bad. If a pk´1q-tuple is i-bad, then it is also pk´ iq-bad. By (7.6), the number
of red i-bad paths equals to the number of blue i-bad paths.

We claim that there exist edge-disjoint k-graphs J2, . . . , Jrk{2s´1 in G´H such that,
for 2 ď i ă k{2,

(i) each Ji is C
pkq
ℓ -decomposable and |Ji| ď 8iℓks,

(ii) G Y
Ť

jPr2,is Jj has a balanced tour-trail decomposition Ti,
(iii) for all j P rk ´ 1s and v P V pHq, pTi,jpvq “ 0 unless v P tzj , zk´ju,
(iv) |DpTiq| “ |DpTi´1q|, and
(v) DpTiq contains no j-bad pk ´ 1q-tuple for all j P ris.
Suppose that, for some 2 ď i ă k{2 ´ 1, we have constructed J2, . . . , Ji´1. We

describe the construction of Ji as follows.
Let a1, . . . ,at be the i-bad red pk´ 1q-tuples in DpTi´1q and b1, . . . ,bt be the i-bad

blue pk ´ 1q-tuples in DpTi´1q. Consider any j P rts. Let

aj “ aj,1 ¨ ¨ ¨ aj,i´1zk´iaj,i`1 ¨ ¨ ¨ aj,k´i´1ziaj,k´i`1 ¨ ¨ ¨ aj,k´1
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bj “ bj,1 ¨ ¨ ¨ bj,i´1zibj,i`1 ¨ ¨ ¨ bj,k´i´1zk´ibj,k´i`1 ¨ ¨ ¨ bj,k´1.

We now mimic the argument in the proof of Lemma 7.6 to swap zi and zk´i in aj ’s

and bj ’s. However, we are unable to construct swapper gadgets Tipaj ,b
´1
j , zi, zk´iq as

both aj and bj contain both zi and zk´i. To overcome this problem, we first replace zi
with a new vertex w (so aj and bj are now free of zi). After this is done, then we can
replace zk´i with zi, and finally we replace w with zk´i. We now formalise the proof
as follows.

Let w P V pHqztzi1 : i1 P rk ´ 1su be a new vertex. Apply Lemma 6.6 to obtain three
edge-disjoint swapper gadgets

Tipaj ,b
´1
j , w, zk´iq, Tipripaj , wq´1, rk´ipbj , wq, zi, zk´iq and

Tiprk´ipaj , zk´iq, ripbj , zk´iq
´1, zi, wq

Let T j be its union and T j be the union of their tour-trail decompositions. It is not
hard to check that after cancellation we obtain

DpT jq “ ta´1
j , b´1

j , ζipajq, ζ̄ipbjqu .

Note that ζipajq and ζ̄ipbjq are not i-bad.
Let Ji “

Ť

jPrts T
j an let Ti “ Ti´1 Y

Ť

jPrts T j be the corresponding tour-trail

decomposition of G Y
Ť

2ďjďi Jj . This finishes the construction of Ji.

Now we have constructed Ji for all 2 ď i ă k{2. We set J “
Ť

2ďiăk{2 Ji, so |J | ď

2k3ℓs “ k3ℓ|DpT1q|. Note that Trk{2s´1 is a balanced tour-trail decomposition of GYJ
without any bad pk ´ 1q-tuple. Therefore, after cancellation, DpTrk{2s´1q is empty,
implying that Trk{2s´1 is a tour decomposition. ■

7.5. Proof of Lemma 7.1. We now put the pieces together to prove Lemma 7.1.

Proof of Lemma 7.1. Apply Lemma 7.3 to obtain a Cpkq
ℓ -decomposable J1 in H ´ G

such that |G Y J1| ď ℓmk`1 and G Y J has a balanced tour-trail decomposition T1.
Let m1 be a prime between kℓmk`1 and 2kℓmk`1 (this exists by Bertrand’s postu-

late). Add isolated vertices to G Y J1 to obtain a subgraph G1 of H such that

|V pG1q| “ m1 and |G1| ď m1{k.

Let z1, . . . , zk´1 P V pHqzV pG1q. Apply Lemma 7.6 (with G1, T1 playing the rôles
of G, T ) to obtain a Cpkq

ℓ -decomposable J2 in H ´ G1 such that

|J2| ď 3kkℓm1

andG2 “ G1YJ2 has a balanced tour-trail decomposition T2 satisfying, for all i P rk´1s

and v P V pHq, pT2,ipvq “ 0 unless v P tzi, zk´iu and |DpT2q| ď 3m1.
Apply Lemma 7.10 (with G2, T2 playing the rôles of G, T1) to acquire a Cpkq

ℓ -
decomposable subgraph J3 in H ´ G2 such that

|J3| ď k3ℓ|DpT2q| ď 3k3ℓm1

and G2 Y J3 has a tour decomposition. We set J “ J1 Y J2 Y J3 and so G Y J has a
tour decomposition and

|G Y J | ď m1 ` 3kkℓm1 ` 3k3ℓm1 ď 3k`2k4ℓ2mk`1.

The ‘moreover’ statement can be obtained by constructing a homomorphic copy of J
in H ´ G ´ J . ■
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8. Transformers III: Proof of Lemma 4.3

Finally, in this section we use the machinery of transformers and tour-trail decom-
positions to find cycle absorbers and prove Lemma 4.3.

Proof of Lemma 4.3. Let W Ď V pHq be of size at m ď m0. By Lemma 6.1, for
any two ordered pk ´ 1q-tuples v1 ¨ ¨ ¨ vk and vℓ´k`1 ¨ ¨ ¨ vℓ in V pHqzW , HzW con-
tains a tight walk v1 ¨ ¨ ¨ vℓ on ℓ vertices and no repeated vertices outside of v1 ¨ ¨ ¨ vk
and vℓ´k`1 ¨ ¨ ¨ vℓ. In particular, there is an ℓ-cycle in HzW covering any arbitrary
k-tuple v1, . . . , vk in HzW . Hence, by Lemma 3.3, it suffices to show that H is

pC
pkq

ℓ ,m0,m0, ηq-transforming for some increasing function η : N Ñ N which satis-

fies ηpxq ě x. Indeed, this will imply that H is pC
pkq

ℓ ,m0,m0, η
1q-absorbable for some

increasing function η1 : N Ñ N such that η1pxq ě x, as desired.

Define η : N Ñ N by ηpxq “ 3k`3k5ℓ3xk`1. We will show that H is pC
pkq

ℓ ,m0,m0, ηq-
transforming. To do so, let G1 and G2 be two vertex-disjoint Cpkq

ℓ -divisible k-graphs
with V pG1q, V pG2q Ď V pHq; suppose that |V pG1q|, |V pG2q| ď m0 and that there
is an edge-bijective homomorphism from G1 to G2. Let W Ď V pHqzV pG1 Y G2q

with |W | ď m0. Let m “ maxt|V pG1q|, |V pG2q|u. Let H 1 “ HzW . It is enough to

show that H 1 contains a pG1, G2;C
pkq

ℓ q-transformer of order at most ηpmq. This will
be our task from now on.

Apply Lemma 7.1 to obtain vertex-disjoint subgraphs J1 and J2 of H 1 ´ G1 ´ G2

such that
(a1) G1 Y J1 and G2 Y J2 have tour decompositions,
(a2) J1 and J2 are Cpkq

ℓ -decomposable,
(a3) J1rV pG1 Y G2qs and J2rV pG1 Y G2qs are empty,
(a4) |G1 Y J1|, |G2 Y J2| ď 3k`2k4ℓ2mk`1, and
(a5) there is an edge-bijective homomorphism ϕ from G1 Y J1 to G2 Y J2.

Let G1
j “ Gj Y Jj for j P r2s. We now claim that there exists a pG1

1, G
1
2;C

pkq

ℓ q-

transformer T ˚ with |Ti| “ pℓ ´ 1q|G1
1|. Indeed, let tAi : i P rssu be a tour decom-

position of G1
1, and recall that ϕ is an edge-bijective homomorphism from G1

1 to G1
2.

Therefore, tϕpAiq : i P rssu is a tour decomposition of G1
2. Now, suppose that for

some i P rss, we have already constructed edge-disjoint T1, . . . , Ti´1 in H 1 ´ G1
1 ´ G1

2

such that, for i1 P ri ´ 1s

(b1) Ti1 is an pAi1 , ϕpAi1q;C
pkq

ℓ q-transformer,
(b2) |Ti1 | “ pℓ ´ 1q|Ai1 |, and
(b3) Ti1rV pG1

1qs Y Ti1rV pG1
2qs “ H.

We construct Ti as follows. Let H
˚ “ H 1 ´ G1

1 ´ G1
2 ´

Ť

i1Pri´1s Ti1 . Let Ai “ v1 ¨ ¨ ¨ vt.

Let wj “ ϕpvjq for all j P rts, so ϕpAiq “ w1 ¨ ¨ ¨wt. Note that ℓ´k2`k´1 ě k2´k by the
choice of ℓ. Therefore, by Lemma 6.1, H˚ contains tight paths P1, . . . , Ps, Q1, . . . , Qs

such that, for each j P rts,
(c1) Pj is a tight path of length k2´k from vj`1vj`2 ¨ ¨ ¨ vj`k´1 to wjwj`1 ¨ ¨ ¨wj`k´2,
(c2) Qj is a tight path of length ℓ´ k2 ` k ´ 1 starting from wjwj`1 ¨ ¨ ¨wj`k´2 and

ending in vjvj`1 ¨ ¨ ¨ vj`k´2, and
(c3) V pPjqzV pDpPjqq and V pQjqzV pDpQjqq are new vertices.

Each of vjvj`1 ¨ ¨ ¨ vj`k´1 Y Pj Y Qj and wjwj`1 ¨ ¨ ¨wj`k´1 Y Pj Y Qj`1 forms a Cpkq
ℓ .

Hence, we are done by letting Ti “
Ť

jPrss Pj YQj . This finishes the construction of Ti.

Thus T ˚ “
Ť

iPrss Ti is the desired pG1
1, G

1
2;C

pkq
ℓ q-transformer.

We finish by defining T “ J1 Y J2 Y T ˚, so

|V pT q| ď k|T | ď kpℓ ` 1q|G1
1|
(a4)
ď 3k`3k5ℓ3mk`1 “ ηpmq.

Together with (a2) and (a3), we deduce that T rV pG1qs is empty and

G1 Y T “ ppG1 Y J1q Y T ˚q Y J2 “ pG1
1 Y T ˚q Y J2
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is Cpkq
ℓ -decomposable, and similarly G2 Y T is Cpkq

ℓ -decomposable. Therefore, T is
a pG1, G2;C

pkq

ℓ q-transformer. ■

9. Cover-down lemma

In this section we prove Lemma 4.2 which is the main step in the iterative part
of iterative absorption. We prove this lemma by induction on k, and when dealing
with k-uniform hypergraphs we will require results on path decompositions for k ´ 1.
To organise our arguments, we define the following two statements for each k ě 3. The
first statement corresponds precisely to the Cover-down lemma for k-graphs, while the
second one concerns decompositions of k-graphs into paths.

(ek) For every α ą 0, there is an ℓ0 P N such that for every µ ą 0 and every n, ℓ P N
with ℓ ě ℓ0 and 1{n ! µ, α the following holds. Let H be a k-graph on n
vertices and U Ď V pHq with |U | “ tαnu such that

(CD1) δp2qpHq ě 2αn,

(CD2) δp2qpH,Uq ě α|U | and
(CD3) degHpxq is divisible by k for each x P V pHqzU .

Then H contains a C
pkq

ℓ -decomposable subgraph F Ď H such that H´HrU s Ď

F and ∆k´1pF rU sq ď µn.

(ñk) For every ℓ ě k and for every α ą 0 there is an n0 such that the following holds.

Every k-graph H on n ě n0 vertices with δp2qpHq ě αn and |H| ” 0 mod ℓ

contains a P
pkq

ℓ -decomposition.

Thus, Lemma 4.2 can be synthetically stated as follows.

Lemma 4.2 (Cover-down lemma (reprise)). (ek) holds for every k ě 3.

We show Lemma 4.2 through an induction on k, in which (ñk) is helpful to enable
the induction step.

Lemma 9.1. For each k ě 3, if (ñk´1) holds, then (ek) holds.

Lemma 9.2. For each k ě 3, if (ek) holds, then (ñk) holds.

Assuming the validity of these two last lemmas, Lemma 4.2 follows easily, if we are
provided with a base case. For this, we use the following result by Botler, Mota, Oshiro
and Wakabayashi [4] on path decomposition in graphs, which immediately yields (ñ2).

Theorem 9.3 ([4]). For each ℓ ě 1, there exists kℓ such that each kℓ-edge-connected
graph whose number of edges is divisible by ℓ has a P

p2q

ℓ -decomposition.

The proof of Lemma 9.2 is given in the next subsection. The proof of Lemma 9.1
will require more effort and is given in Subsection 9.4, after some previous necessary
results.

9.1. Path decompositions: proof of Lemma 9.2 and Theorem 1.4. To see that
the bound δP pkq

ℓ
ě 1{2 holds, consider the following example. Take the union of Kpkq

tn{2u

and Kpkq
rn{2s

on vertex sets A and B, respectively. Delete a few edges if necessary so

that resulting k-graph H satisfies |H| ” 0 mod ℓ but |HrAs| ı 0 mod ℓ. Then H
is not P pkq

ℓ -decomposable and δpHq ě p1{2 ´ op1qqn. On the other hand, note that
Lemma 9.2 and Lemma 9 imply Theorem 1.4.

The proof of Lemma 9.2 follows essentially the same strategy we use to prove The-
orem 1.3 in Section 4. The Vortex lemma is the same and for the Cover-down lemma
we may use (ek), which is assumed to hold as a hypothesis. To see this, it is enough to
notice that for every sufficiently large ℓ1 divisible by ℓ, a Cpkq

ℓ1 -decomposable subgraph
is P pkq

ℓ -decomposable as well. Hence, the only new ingredient needed is the following
Absorber lemma for paths.
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Lemma 9.4 (Absorber lemma for paths). Let 1{n ! ε ! 1{ℓ, 1{k, 1{m0 with k ě 3.

Let H be a k-graph on n vertices with δp2qpHq ě εn. Then H is pP
pkq

ℓ ,m0,m0, η
1q-

absorbing for some increasing function η1 : N Ñ N satisfying η1pxq ě x and independent
of ε and n.

Proof. Pick an arbitrary edge e P P
pkq

ℓ and let a be any k-tuple in V pHq. Since the

inequality δp2qpHq ě εn holds, it is easy to see for every W Ď V pHqztv1, . . . , vku of
size at most m0 there is a copy of P pkq

ℓ in pH Y tauqzW in which a plays the rôle of e.
We do this by simply extending a path (maybe in both directions) starting with a,

which we can do simply because of δpHq ě δp2qpHq ě εn. This enables us to use
Lemma 3.3, and hence, it is enough to prove that H is pP

pkq

ℓ ,m0,m0, ηq-transforming
for some increasing function η : N Ñ N.

Let ℓ0 be the smallest number larger than k2 ´ k which is divisible by ℓ and de-
fine ηpxq “ ℓ0x

2. Let G,G1 Ď H be vertex-disjoint P
pkq

ℓ -divisible subgraphs such
that there is an edge-bijective homomorphism ϕ from G to G1. Also, let W Ď

V pHqzV pG Y G1q and suppose |V pGq|, |V pG1q| ď m0 and |W | ď m0 ´ ηp|V pGq|q.
For every edge e P G apply Lemma 6.1 to find a path Pe Ď HzW between e and ϕpeq

with precisely ℓ0 ` 1 edges. Since ℓ0 is divisible by ℓ, T “
Ť

ePG Pe is a pG,G1;P
pkq

ℓ q-
transformer of size at most ℓ0epGq ď ηpmaxt|V pGq|, |V pG1q|uq. ■

We omit further details of proof of Lemma 9.2 and reference the reader to the proof
of Theorem 1.3.

9.2. Well-behaved approximate cycle decompositions. Given a k-graph H such
that δp2qpHq ě αn, we find a Cpkq

ℓ -packing C that covers almost all edges of H and
such that the leftover is not too concentrated in a pk ´ 1q-tuple. Here, a Cpkq

ℓ -packing
is a set of edge-disjoint copies of Cpkq

ℓ . More precisely, we have the following lemma.

Lemma 9.5 (Well-behaved cycle decompositions). Given k P N and α ě 0 there is
an ℓ0 P N such that for every γ ą 0 and ℓ, n P N with ℓ ě ℓ0 and 1{n ! γ, α, 1{ℓ the

following holds. Let H be a k-graph on n vertices with δp2qpHq ě αn. Then H has
a Cpkq

ℓ -packing C such that ∆k´1pH ´
Ť

Cq ď γn.

The case k “ 3 is proven by the last two authors in [14] and here we follow the same
lines. Given a k-graph H and an edge e P H, recall that CℓpHq and CℓpH, eq are the
family of all ℓ-cycles in H and those containing e. The proof of Lemma 9.5 rests in a
result by Joos and Kühn [11] about fractional Ck

ℓ -decompositions.

Theorem 9.6 (Joos and Kühn [11]). Given k P N and α, µ ě 0 there is an ℓ0 P N such
that for every ℓ, n P N with ℓ ě ℓ0 and 1{n ! α, 1{ℓ the following holds. Let H be a k-

graph on n vertices with δp2qpHq ě αn. Then there is a fractional C
pkq

ℓ -decomposition ω
of H with

p1 ´ µq
2|H|

∆k´1pHqℓ
ď ωpCq ď p1 ` µq

2|H|

δk´1pHqℓ

for all cycles C P CℓpHq.

Additionally, we need the following nibble-type matching theorem. The statement of
the theorem is technical, but in our context the conditions are easy to check. Consider
the following parameter gpHq “ ∆1pHq{∆2pHq for every k-graph H.

Theorem 9.7 (Alon and Yuster [1]). For every γ ą 0, there is a ξ ą 0 such that
for every sufficiently large n the following holds. Let H be a k-graph on n vertices
and let U1, . . . , Ut Ď V pHq be subsets of vertices with log t ď gpHq1{p3k´3q and such

that |Ui| ě 5gpHq1{p3k´3q logpgpHqtq for every i P rts. Suppose that
(a) δ1pHq ě p1 ´ ξq∆1pHq and
(b) ∆1pHq ě plog nq7∆2pHq .

Then H contains a matching such that at most γ|Ui| vertices are uncovered in each Ui.
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Lemma 9.5 follows by an straightforward application of Theorems 9.6 and 9.7.

Proof of Lemma 9.5. Given k P N and α ą 0 fix any µ, ξ ă 1{3 and take ℓ0 given by
Theorem 9.6. Let ℓ ě ℓ0, γ ą 0 and let n be sufficiently large for an application of
Theorems 9.6 and 9.7.

First, we apply Theorem 9.6 to obtain a fractional C
pkq

ℓ -decomposition ω of H sat-
isfying

ωpCq ď p1 ` µq
2|H|

δk´1pHqℓ
ď

3nk

δp2qpHqℓ
ď

3

αℓnℓ´k
,(9.1)

for all cycles C P CℓpHq.
Then, consider the auxiliary ℓ-graph F with vertex set EpHq and an edge in F for

each cycle in CℓpHq corresponding to its set of ℓ edges in H. Define a random subgraph

F 1 Ď F by keeping each edge C with probability pC “ n1{2ωpCq ď 1 by (9.1).

For every edge e P H we have ErdF 1peqs “ n1{2
ř

CPCℓpH,eq ωpCq “ n1{2. Moreover,

since two distinct edges e, f P EpHq can participate together in at most Opnℓ´pk`1qq

many C
pkq

ℓ in H, (9.1) implies that the expected 2-degree is bounded by ErdF 1pe, fqs “

Opn´1{2q. Using standard concentration inequalities we get that with high probability

dF 1peq “ p1 ` op1qqn1{2 for each e P V pF 1q and that ∆2pF 1q “ Oplog nq. This means
that

δ1pF 1q ě p1 ´ op1qq∆1pF 1q, gpF 1q “ Ωpn1{2{ log nq and gpF 1q “ Opn1{2q.

For each pk ´ 1q-set S of vertices of H, let US Ď V pF q correspond to the edges
in H containing S. There are at most nk´1 such sets and each has size at least εn.
Thus, it is easy to check that the conditions for Theorem 9.7 are satisfied. Therefore,
there is a matching M in F 1 such that at most γn vertices in V pF 1q are uncovered in
each US . The matching M in F 1 Ď F translates to a Cpkq

ℓ -packing C in H and the
latter condition implies ∆k´1pH ´

Ť

Cq ď γn, as desired. ■

9.3. Extending lemma. For this section we will use the following result (see [14,
Theorem 5.5]).

Theorem 9.8. Let X1, . . . , Xt be Bernoulli random variables (not necessarily inde-
pendent) such that, for each i P rts, we have PrXi “ 1|X1, . . . , Xi´1s ď pi. Let
Y1, . . . , Yt be independent Bernoulli random variables such that PrYi “ 1s “ pi for
all i P rts. Let X “

ř

iPrts Xi and Y “
ř

iPrts Yi. Then PrX ě ks ď PrY ě ks for all

k P t0, 1, . . . , tu.

Let S be a multiset of ordered pk ´ 1q-tuples in an n-vertex set V , possibly with
repetitions. We say that S is γ-sparse if the multi-pk ´ 1q-graph S formed by all the
unoriented pk ´ 1q-sets from S, counting repetitions, has ∆jpSq ď γnk´j for each 0 ď

j ď k ´ 1. For instance, the j “ 1 case says that no vertex is in more than γnk´1

tuples (counting repetitions). Recall the definition of ends of a trail P and DpP q in
Section 6.1.

Lemma 9.9 (Extending lemma). Let 1{n ! γ ! µ ! ε, 1{ℓ, 1{k. Let H be a k-graph
on n vertices. Let S “ tai,bi : i P rtsu be a multiset of ordered pk ´ 1q-tuples in V pHq

such that
(a) S is γ-sparse and
(b) for each i P rts, there are at least εnℓ trails P in H on ℓ ` 2pk ´ 1q vertices

such that DpP q “ tai,biu.
Then, there exist edge-disjoint trails P1, . . . , Pt in H such that, for each i P rts,

(i) Pi has ℓ ` 2pk ´ 1q vertices and DpPiq “ tai,biu,
(ii) the vertices of Pi outside ai and bi are all distinct and
(iii) ∆k´1p

Ť

iPrts Piq ď µn.
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Proof. The idea is to pick, sequentially, a trail Pi chosen uniformly at random among
all the trails whose ends are ai and bi. Since S is γ-sparse and there are plenty of
choices for Pi in each step, we expect that in each step the random choices do not affect
the codegree of the graph formed by the yet unused edges in H by much. This will
ensure that, even after removing the edges used by P1, . . . , Pi´1, there are still many
trails Pi available for the ith step. If all goes well, then we can continue the process
until the end, thus finding the required trails.

We say that a trail P is i-good if P is on ℓ ` 2pk ´ 1q vertices, DpP q “ tai,biu

and the vertices of P outside ai and bi are all distinct. Let PipHq be the set of
all i-good trails in H. We begin by noting that PipHq is large. Indeed, there are at
most ℓ2nℓ´1 ď εnℓ{2 trails P on ℓ ` 2pk ´ 1q vertices with DpP q “ tai,biu that is
not i-good. By (b), |PipHq| ě εnℓ{2. Since µ ! ε, we have

if G is a k-graph with ∆k´1pGq ď µn, then |PipH ´ Gq| ě εnℓ{3.(9.2)

We now describe the random process. For each i P rts, assume we have already
chosen edge-disjoint P1, P2, . . . , Pi´1 Ď H, and we describe the choice of Pi. Let Gi´1 “
Ť

jPri´1s Pj correspond to the edges of H used by the previous choices of Pj , which we

need to avoid when choosing Pi (note that G0 is empty). If ∆k´1pGi´1q ď µn, then
(9.2) implies that |PipH ´ Gi´1q| ě εnℓ{3 and we take Pi P PipH ´ Gi´1q uniformly
at random. Otherwise, if ∆k´1pGi´1q ą µn, then let Pi “ H.

In any case, the process outputs a collection of edge-disjoint subgraphs P1, . . . , Pt.
Our task now is to show that with positive probability, there is a choice of P1, . . . , Pt

such that ∆k´1pGtq ď µn. This will imply also that Pi P Pi, which is what we needed.
Formally, for each i P rts, let Si be the event that ∆k´1pGiq ď µn. Thus it is enough
to show PrSts ą 0.

Fix e P
`V pHq

k´1

˘

. For each i P rts, let Xipeq be the random variable that takes the

value 1 precisely if e belongs to an edge of Pi, and 0 otherwise. Equivalently, Xipeq “ 1
if and only if degPi

peq ě 1. Since ∆k´1pPiq ď 2 for each i P rts, we have

degGi
peq ď 2

ÿ

jPris

Xjpeq .(9.3)

For each i P rts, define

ripeq “ maxt|e X ai|, |e X bi|u and p˚
i peq “ min

"

1,
6ℓk

εnpk´1q´ripeq

*

,

where here ai, bi are taken as the underlying pk ´ 1q-sets.

Claim 9.10. For each e P
`V pHq

k´1

˘

and i P rts, PrXipeq “ 1|X1peq, X2peq, . . . , Xi´1peqs ď

p˚
i peq.

Proof of the claim. Fix e P
`V pHq

k´1

˘

and i P rts. Using conditional probabilities, we
separate our analysis depending on whether Si´1 holds or not. If Si´1 fails, then Pi “

H and so Xipeq “ 0 implying that our claim holds.
Now assume that Si´1 holds, so ∆k´1pGi´1q ď µn. By (9.2), Pi will be chosen

uniformly at random from PipH ´ Gi´1q, which has size at least εnℓ{3 irregardless of
the values of X1peq, . . . , Xi´1peq.

If ripeq “ k ´ 1, then p˚
i peq “ 1 and we are done. We may assume that r “ ripeq P

rk ´ 2s Y t0u. We now estimate the number of P P PipH ´ Gi´1q with degP peq ě 1. If
we have P “ v1v2 ¨ ¨ ¨ vℓ`2pk´1q and degP peq ě 1, then j0 “ mintj : vj P eu P rℓ`k´1s

and |tj P rks : vj0`j R eu| “ 1. Recall that, for each P P PipH ´ Gi´1q, it holds
that |V pP qztai,biu| “ ℓ and it also holds that |ezai|, |ezbi| ě k ´ 1 ´ ripeq. Hence,
we deduce that the number of P P PipH ´ Gi´1q with degP peq ě 1 is certainly at
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most pℓ ` k ´ 1qknℓ´pk´1´ripeqq ď 2ℓknℓ´pk´1´ripeqq. Thus we have

PrXipeq “ 1|X1peq, . . . , Xi´1peq,Si´1s ď
2ℓknℓ´pk´1´ripeqq

|PipH ´ Gi´1q|
ď

6ℓk

εnk´1´ripeq
“ p˚

i peq ,

as required. This finishes the proof of the claim. –

Now, we use that S is γ-sparse to argue that
ř

iPrts p
˚
i peq is small for each e P

`V pHq

k´1

˘

.

Indeed, for each 0 ď r ď k ´ 1, let tr be the number of i P rts such that ripeq “ t.

Since S is γ-sparse, we have tr ď 2
`

k´1
r

˘

γnk´r for each 0 ď r ď k ´ 1. Recall that we
are assuming the hierarchy γ ! µ ! ε, 1{ℓ, 1{k. Therefore, we have

ÿ

iPrts

p˚
i peq “ tk´1 `

ÿ

0ďrďk´2

tr ¨
6ℓk

εnk´1´r
ď

µ

30
n.(9.4)

We now claim that

P

»

–

ÿ

iPrts

Xipeq ě
µ

3
n

fi

fl ď exp
´

´
µ

3
n

¯

.(9.5)

Indeed, (9.4) implies that 7
ř

iPrts p
˚
i peq ď µn{3, so the bound follows from Theorem 9.8

combined with a Chernoff-type bound [10, Corollary 2.4].
For each e P

`

V pHq

2

˘

, let Xe :“
ř

iPrts Xipeq. Let E be the event that maxeXe ď µn{3.

By using a union bound over all the (at most nk´1) possible choices of e and using
(9.5), we deduce that E holds with probability at least 1 ´ op1q.

Now we can show that St holds with positive probability. In fact, we shall prove
that PrSt|Es “ 1, which then will imply PrSts ě PrSt|EsPrEs ě 1 ´ op1q. So assume E
holds, that is, maxeXe ď µn{3. Note that S0 holds deterministically, and suppose
that i P rts is the minimum such that Si fails to hold. Since Si´1 holds, using (9.3) we
deduce

∆k´1pGiq ď 2 ` ∆k´1pGi´1q “ 2 ` max
e

degGi´1
peq ď 2

¨

˝1 ` max
e

ÿ

jPri´1s

Xipeq

˛

‚

ď 2
´

1 ` max
e

Xe

¯

ď 2
´

1 `
µ

3
n

¯

ď µn,

where in the penultimate inequality we used E , and in the last inequality we used
1{n ! µ. Thus Si holds, a contradiction. ■

The following corollary of Lemma 9.9 allows us to find a sparse path-decomposable
subgraph whose removal adjusts the degrees modulo k. This was used in proving
Corollary 2.4.

Corollary 9.11. Let 0 ă 1{n ! µ ! 1{ℓ, 1{k, ε with ℓ ą k ě 3. Let H be a k-

graph on n vertices such that δp2qpHq ě εn. Then there exists a P
pkq

ℓ -decomposable
subgraph H 1 such that

(i) |H 1| ď ℓ2kn,
(ii) ∆k´1pH 1q ď µn and
(iii) for each x P V pHq, we have degH´H 1pxq ” 0 mod k.

Proof. We start by finding a multidigraph D on V “ V pHq such that d`
Dpvq ´d´

Dpvq `

degHpvq ” 0 mod k holds for each v P V . This can be constructed greedily, starting
from an empty digraph D. As long as there is a pair of vertices u, v and 0 ă i ď j ă k
with d`

Dpuq ´d´
Dpuq `degHpuq ” i mod k and d`

Dpvq ´d´
Dpvq `degHpvq ” j mod k, we

pick them by minimising i and maximising j, and then we add the directed edge u Ñ v
to D. Since

ř

xPV pHq degHpxq “ k|H| ” 0 mod k, this process is guaranteed to end.

By construction, we have d`
Dpvq, d´

Dpvq ď k for each v P V , and D has at most kn arcs.
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Let ℓ0 be the minimum integer divisible by ℓ such that ℓ0 ě k2 ´ k ` 2. We clearly
have the inequality ℓ0 ď ℓ2. Given vertices u, v P V , suppose that T “ Tu,v Ď H is
a P

pkq

ℓ -decomposable subgraph on ℓ0 edges such that degT puq “ k ´ 1, degT pvq “ 1
and degT pwq ” 0 mod k for all other vertices. Suppose we can find an edge-disjoint
collection T of such subgraphs Tu,v, one for each edge u Ñ v in D, with the additional
condition that the union H 1 of those subgraphs has codegree at most µn. Then H 1

is easily seen to satisfy the required conditions. We now describe the construction of
such a family.

Each Tu,v will be chosen as follows. Given uv P EpDq, we pick a pk ´ 2q-tuple of

vertices xpu, vq “ x2 ¨ ¨ ¨xk´1 P pV ztu, vuqk´2, uniformly at random. Then, we consider
the pk ´ 1q-tuples vu,v “ uxk´1 ¨ ¨ ¨x2 and wu,v “ x2 ¨ ¨ ¨xk´1v. Note that a trail with
ends vu,v and wu,v using ℓ0 edges and no new repeating vertices forms a Tu,v with the

required characteristics. In particular, Tu,v has a P
pkq

ℓ -decomposition.
Consider the multiset of ordered pk ´ 1q-tuples Q “

Ť

uvPEpDqtvu,v,wu,vu. Since
the bounds ∆`pDq,∆´pDq ď k hold and xpu, vq was chosen at random for each di-
rected edge uv P EpDq, we can assume that Q is γ-sparse. Select a new constant ρ
which satisfies the hierarchy µ ! ρ ! ε. By Lemma 6.1, for each uv P EpDq, there
exist ρnℓ0´k`1 trails with ℓ0 edges and ends vu,v and wu,v. Then, Lemma 9.9 (with ρ
in place of ε) provides us with an edge-disjoint collection of trails tTuv : uv P EpDqu,
one for each uv P EpDq, such that Tuv has ends vu,v and wu,v, no repeated vertices
save for those in the ends, and H 1 “

Ť

uvPEpDq Puv satisfies ∆k´1pH 1q ď µn, which is

all we needed. ■

9.4. Cover-down lemma: Proof of Lemma 9.1. For this section, we will require
a few pieces of new notation. Given a k-graph H, a vertex set U Ď V pHq, a pk ´ 1q-
tuple e P

`V pHq

k´1

˘

, and a set of pk´1q-tuples G Ď
`V pHq

k´1

˘

, defineNHpe, U ;Gq “ Npe, UqX

G. Moreover, define

δp2qpH;U,Gq “ min

"

NHpe1, U ;Gq X NHpe2, U ;Gq : e1, e2 P

ˆ

V pHq

k ´ 1

˙*

.

Proof of Lemma 9.1. Given k P N and α ą 0 take ℓ0 P N larger than the one given
by (ñk´1) and sufficiently large for an application of Lemma 9.5. Moreover, for µ ą 0
we take auxiliary variables γ, pi and µi for every i P rk ´ 1s, under the following
hierarchy

0 ă γ ! µ1 ! p1 ! ¨ ¨ ¨ ! µk´1 ! pk´1 ! µk ! µ, α .

Finally take γi “ γ ` 2pi ! µi`1 and αi “ piα
2{2 ´

ř

0ďjďi´1 µj " µi. Let n P N be
sufficiently large and let H be as in the statement of the lemma.

Step 1: Setting the stages. For every 0 ď i ď k ´ 1, let Hi “ te P H : |e X U | “ iu
and let Ri Ď Hi be defined by choosing edges independently at random from Hi

with probability pi. Moreover, let Rěi “
Ť

iďjďk´1Rj . Considering (CD2), by stan-
dard concentration inequalities we have that with non-zero probability the following
inequalities happen simultaneously: for every 0 ď i ď k ´ 1,

∆k´1pRiq ď 2pin(9.6)

δ
p2q

k´1pRěi Y HrU s;U,Gi´1q ě
piα|U |

2
ě

piα
2n

2
,(9.7)

where Gi “ te P
`

V
k´1

˘

: |eXU | ě iu (we include the degenerate cases G´1 “G0 “
`

V
k´1

˘

q.
From now on for every 0 ď i ď k ´ 1 we consider Ri to be a fixed graph with those
properties.

Define H‹ “ H ´ HrU s ´ Rě0 and observe that δp2qpH‹q ě αn{2. Hence we can
apply Lemma 9.5 to find a Cpkq

ℓ -packing C such that ∆k´1pH‹ ´
Ť

Cq ď γn. We shall
find a Cpkq

ℓ -packing that covers the leftover J “ H‹ ´
Ť

C and the graph Rě0. We
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do this in stages, covering the edges Ji “ pJ X Hiq Y Ri (and some from Rěiq in each
stage.

Step 2: The first k ´ 1 stages. To start, let C´1 “ J´1 “ H. Let 0 ď i ă k ´ 2
and denote the edges which were covered in previous stages by Jďi´1 “

Ť

0ďjďi´1 Jj .
Suppose there is a Cpkq

ℓ -packing Ci´1 such that

ď

Ci´1XHrU s“H, Jďi´1 Ď
ď

Ci´1 , and ∆k´1

`

ď

Ci´1´Jďi´1

˘

ď
ÿ

0ďjďi

µjn.

(9.8)

Note that (9.8) holds vacuously for i “ 0. We shall prove the existence of a packing Ci
satisfying (9.8) for i instead of i ´ 1.

Consider R̃ěi`1 “ Rěi`1 ´
Ť

Ci´1 and J̃i “ Ji ´
Ť

Ci´1 the remaining edges
from Rěi`1 and Ji after deleting

Ť

Ci´1. Because of (9.7) and (9.8) we have that

δp3qpR̃ěi`1;U,Giq ě

´pi`1α
2

2
´

ÿ

0ďjďi`1

µj

¯

n “ αi`1n " µi`1n .(9.9)

Moreover, in view of (9.6), we obtain

∆k´1pJ̃iq ď ∆k´1pJq ` ∆k´1pRiq ď γn ` 2piαn “ γin .(9.10)

Enumerate edges of J̃i into e1, . . . , et. For each j P rts, we oriented ej arbitrarily

and let taj ,bju be such that Dpejq “ ta´1
j ,b´1

j u. Note that S “ taj ,bj : j P rtsu

is γi-sparse. Moreover, (9.9) and Lemma 6.1 implies, for each j P rts, R̃i`1 contains
at least αi`1n

ℓ´k trails P on ℓ ` k ´ 2 vertices such that DpP q “ taj ,bju. We apply

Lemma 9.9 with αi`1, µi`1, γi, ℓ ´ k, R̃i`1 in the rôles of α, µ, γ, ℓ,H to obtain edge-
disjoint trails P1, . . . , Pt in R̃i`1 such that, for each j P rts,

(i) Pj has ℓ ` k ´ 2 vertices and DpPjq “ taj ,bju,
(ii) the vertices of Pj outside aj and bj are all distinct and
(iii) ∆k´1p

Ť

jPrts Pjq ď µi`1n.

Note that ei YPi is C
pkq

ℓ , so J̃i Y
Ť

jPrts Pj has a C
pkq

ℓ -decomposition C1
i. It is easy to see

that by taking Ci “ Ci´1 Y C1
i we obtain a C

pkq

ℓ -packing satisfying (9.8) with i instead
of i ´ 1.

Step 3: The last stage. For the last stage, a few changes are needed. This is because in
the previous stages we used edges from Hi`1 to extend paths in Hi, which is no longer
possible at this stage. Instead, we rely on the path decompositions ensured by (ñk´1).

As before, we define J̃k´1 “ Jk´1 ´
Ť

Ck´2. For every vertex v P V pHqzU ,

we let F pvq “ Lv X J̃k´1 be the link graph of v in the hypergraph J̃k´1. Note

that F pvq is completely contained in U . We shall apply (ñk´1) to find a P
pk´1q

k -
decomposition in F pvq. For this, we first prove that |F pvq| “ degJ̃k´1

pvq is divis-

ible by k. Indeed, (CD3) says that degHpvq is divisible by k, and since J̃k´1 “

H ´ HrU s ´
Ť

C ´
Ť

Ck´2 we have degJ̃k´1
pvq is divisible by k as well. Moreover,

because of (9.7) and (9.9) we have that

δp3qpF pvqq ě
pk´1α

2

2
n ´

ÿ

0ďjďk´1

µjn ě αk´1n .

Hence, (ñk´1) yields a P pk´1q
k -decompositon of F pvq. Notice that each path in this

decomposition corresponds to a P pkq
k`1 in J̃k´1 when we include the vertex v in every

edge. Call this P pkq
k`1-packing Pv and observe that paths from Pv and Pu are edge-

disjoint for every u ‰ v. This means P “
Ť

vPV pHqzU Pv is a P pkq
k`1-decomposition

of J̃k´1.
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Now we continue as in the previous stages and observe that

∆k´1pJ̃k´1q ď ∆k´1pJq ` ∆k´1pRk´1q ď γn ` 2pk´1αn “ γkn ,

which implies that DpPq (without simplification) is γk-sparse. Moreover, (9.8) implies
that

δp3qppH ´ Ck´2qrU sq “ δp3qpHrU sq ě α|U | ,

By Lemma 6.1, for any P P P with DpP q “ ta´1,b´1u, pH ´ Ck´2qrU s contains at
least αnℓ´k´1 trails Q on ℓ ` k ´ 3 vertices such that DpQq “ ta,bu. Finally, we
apply Lemma 9.9 as in the previous stages to obtain edge-disjoint trails tQP : P P Pu

in pH ´ Ck´2qrU s such that, for each P P P,
(i) QP has ℓ ` k ´ 3 vertices and DpQP q “ ta,bu such that DpP q “ ta´1,b´1u,
(ii) the vertices of QP outside DpQP q are all distinct and
(iii) ∆k´1p

Ť

PPP QP q ď µkn.

Each P Y QP forms a Cpkq
ℓ , so J̃k´1 Y

Ť

PPP QP “
Ť

PPPpP Y QP q has a Cpkq
ℓ -

decomposition C1
k´1. Thus, recalling (9.8), it is easy to see that the C

pkq

ℓ -packing
C‹ “ C Y Ck´2 Y C1

k´1 satisfies the requirements of the lemma. ■

10. Eulerian Tours

We first show that a lower bound of (essentially) n{2 on the codegree of k-graphs is
necessary to ensure that every edge is in some tight cycle. The bound is asymptotically
tight by Lemma 6.1 (which can be used to find cycles which contain any given edge).
This also provides the lower bound in Theorem 1.5.

Proposition 10.1. For all k ě 3 and m ě 2, there exists a k-graph H on n “ 2mk
vertices with δpHq ě n{2 ´ 2k ` 1 such that degpvq is divisible by k for all v P V pHq

and there is an edge that is not contained in any tight cycle. In particular, we have
the bounds δpkq

cycle, δ
pkq
Euler ě 1{2.

Proof. Let A and B be disjoint vertex-sets each of size mk. Recall that, for 0 ď i ď k,

we defined Hi “ H
pkq

i pA,Bq as the k-graph with vertex set A Y B such that e P Hi if
and only if |e X B| “ i. Consider the k-graph

H‹ “
ď

iPpt0uYrksqzt1,k´1u

H
pkq

i pA,Bq ,

and observe that δpH‹q ě n{2 ´ k ` 1. Note that each vertex has the same vertex-
degree. By removing at most k ´ 1 perfect matchings in each of H‹rAs “ H0pA,Bq

and H‹rBs “ HkpA,Bq, we may assume that each vertex has vertex-degree divisible
by k. Additionally, remove edges a1 ¨ ¨ ¨ ak P H‹rAs and b1 ¨ ¨ ¨ bk P H‹rBs and add
two edges a1 ¨ ¨ ¨ ak´1bk and b1 ¨ ¨ ¨ bk´1ak. Call the resulting graph H. Note that the
bound δpHq ě n{2 ´ 2k ` 1 holds, and for every vertex v, dHpvq is divisible by k.

We now claim that the edge a1 ¨ ¨ ¨ ak´1bk is not contained in any tight cycle. Indeed,
for k “ 3, note that degHpa1b3q “ degHpa2b3q “ 1, so a1a2b3 can only be the end of
any tight path implying that a1a2b3 is not contained in any tight cycle. Now assume
that k ě 4. Since a1 ¨ ¨ ¨ ak´1bk is the only edge in HXH1pA,Bq (i.e. with exactly k´1
vertices in A) any tight path of length containing a1 ¨ ¨ ¨ ak´1bk internally must travel
from H0pA,Bq to

Ť

iě2H
ipA,Bq. However, there is no other edge in H X H1pA,Bq

to close this tight path into a cycle.
Since we have ensured every degree in H is divisible by k, this construction shows

that δ
pkq

cycle, δ
pkq

Euler ě 1{2. ■

We split the other inequalities in Theorem 1.5 into several lemmas.

Lemma 10.2. For k ě 3, δ
pkq

Euler ď δ
pkq

cycle.
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Proof. Let ℓ “ k2 and k ě 3. Let 0 ă 1{n ! γ ! µ ! ε. Let H be a k-graph on n

vertices with δpHq ě
`

δpkq
cycle ` ε

˘

n such that degHpvq is divisible by k for all v P V pHq.
Note that δpHq ě p1{2` εqn by Proposition 10.1. Let σ1, . . . , σt be an enumeration of
all ordered pk ´ 1q-tuples of V pHq, so t “ n!{pn ´ k ` 1q!. For each i P rts, let ai “ σi
and bi “ σ´1

i`1, with indices taken modulo t. Let S “ tai,bi : i P rtsu be the multisets.

Note that S is γ-sparse. By Lemma 6.1, for all i P rts, H contains at least εnℓ trails P
on ℓ ` 2pk ´ 1q vertices such that DpP q “ tai,biu. Apply Lemma 9.9 to obtain
edge-disjoint trails tPi : i P rtsu in H such that, for each i P rts,

(i) Pi has ℓ ` 2pk ´ 1q vertices and DpPiq “ tai,biu;
(ii) the vertices of Pi outside DpPiq are all distinct and
(iii) ∆k´1p

Ť

iPrts Piq ď µn.

Let P “
Ť

iPrts Pi, and note that (after joining trails) we obtain a tour in H. Consider

the k-graph H 1 “ H ´ P. Note that degH 1pvq is divisible by k for all v P V pH 1q

and δpH 1q ě δpHq ´µn ě pδpkq
cycle ` ε{2qn. Thus there is a cycle-decomposition C of H 1.

By attaching each cycle to the tour P, we obtain an Eulerian tour in H. Hence we
obtain δpkq

Euler ď δpkq
cycle, as desired. ■

Lemma 10.3. For k ě 3, δpkq
cycle ď δpkq

Euler.

Proof (sketch). Let δ “ δpkq
Euler, by Proposition 10.1 we have δ ě 1{2. Given ε ą 0,

let n be sufficiently large and let H be a k-graph on n vertices with δpHq ě pδ ` 2εqn
with all vertex-degree divisible by k. It is enough to show that H is decomposable into
cycles.

The idea is to use the iterative absorption framework. Indeed, since δ ě 1{2, we

have δp2qpHq ě 4εn. Thus there exists ℓ large enough (depending on ε only) such that
the Vortex lemma (Lemma 4.1) and the Cover-down lemma (Lemma 4.2) work in this
setting. Thus it is possible to find a vortex U0 Ě U1 Ě ¨ ¨ ¨ Ě Ut to find a Cpkq

ℓ -packing
which cover all edges except but those located in Ut. In fact, we can assume that
the leftover F Ď HrUts satisfies δpF q ě pδ ` εq|Ut| (see the proof of Theorem 1.3 in
Section 4 for detailed calculations to make these two steps work). The only missing
step is the construction of an absorber for such a constant-sized leftover.

The key observation here is that since the leftover F will satisfy δpF q ě pδ`εq|Ut|, we
can assume that F admits an Euler tour. Since an Euler tour admits an edge-bijective
homomorphism from a cycle, we can easily build a cycle-decomposable transformer
between such a leftover and a cycle, and this step requires only δp2qpHq ě εn (this is
exactly what is done in the proof of Lemma 4.3). ■

Lemma 10.4. For k ě 3, δpkq
cycle ď infℓąktδCpkq

ℓ
u.

Proof. Let δ “ infℓąktδCpkq

ℓ
u. Note that δ ě 1{2 by Proposition 10.1.

Let 1{n ! ε and let H be a k-graph on n vertices with δpHq ě pδ ` 3εqn and every
degree divisible by k. By the definition of infimum, there exists ℓ (depending on ε
only) such that δCpkq

ℓ
ď δ ` ε. Since δpHq ě p1{2` 2εqn, we can use Lemma 6.1 to find

a cycle C whose removal leaves a number of edges divisible by ℓ. Thus δpH ´ Cq ě

pδ ` 2εqn ě pδCpkq

ℓ
` εqn, and therefore H ´ C admits a C

pkq

ℓ -decomposition. Together
with C, this is a cycle decomposition of H. ■

Theorem 1.5 follows immediately from Lemma 10.2, Lemma 10.4, Proposition 10.1
and Theorem 1.3.

11. Concluding remarks

Theorem 1.5 and Theorem 1.3 show that, for all k and sufficiently large ℓ, the
inequalities 1{2 ď δpkq

Euler “ δpkq
cycle ď δCpkq

ℓ
ď 2{3 are valid. For k “ 3, the second and

third authors [14] gave an example showing that δp3q
Euler ě 2{3 and thus in this the we

actually have the equality δp3q
Euler “ δp3q

cycle “ δCp3q

ℓ
“ 2{3 holds for all large ℓ. However,
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we were unable to generalise the examples presented there for k ě 4. Our best example
(Proposition 10.1) gives us δpkq

cycle ě 1{2, so we propose the following question.

Question 11.1. Does there exist k ě 4 such that δpkq
cycle ą 1{2?

We gave a new lower bound for the fractional C
pkq

ℓ -decomposition threshold δ˚
C

pkq

ℓ
in Proposition 2.1. Moreover, when k{ gcdpℓ, kq is even or gcdpℓ, kq “ 1, we are able
to calculate the value given by our bound in a explicit form (see Corollary 2.3). Is
the construction given by Proposition 2.1 best-possible? We would like to propose the
following weaker question.

Question 11.2. Given k ě 2, does there exist ℓ0 such that, for all ℓ ą ℓ0 with ℓ ı 0
mod k, δ˚

C
pkq

ℓ
ď 1

2 ` 1
2pℓ´1q

?

When k “ 2, we believe that ℓ0 should be 1, which also implies the Nash-Williams
conjecture [13] on δK3 (c.f. [3, Theorem 1.4]).
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[3] Ben Barber, Daniela Kühn, Allan Lo, and Deryk Osthus. “Edge-decompositions of graphs with
high minimum degree”. Adv. Math. 288 (2016), 337–385. doi: 10.1016/j.aim.2015.09.032.

[4] F. Botler, G. O. Mota, M. T. I. Oshiro, and Y. Wakabayashi. “Decomposing highly edge-
connected graphs into paths of any given length”. J. Combin. Theory Ser. B 122 (2017), 508–
542. doi: 10.1016/j.jctb.2016.07.010.

[5] Fan Chung, Persi Diaconis, and Ron Graham. “Universal cycles for combinatorial structures”.
Discrete Math. 110.1-3 (1992), 43–59. doi: 10.1016/0012-365X(92)90699-G.
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[7] Stefan Glock, Daniela Kühn, Allan Lo, and Deryk Osthus. “The existence of designs via itera-
tive absorption: hypergraph F -designs for arbitrary F”. To appear in Mem. Amer. Math. Soc.
Preprint (2016). doi: 10.48550/ARXIV.1611.06827.
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[11] Felix Joos and Marcus Kühn. “Fractional cycle decompositions in hypergraphs”. Random Struc-
tures Algorithms (2021), 1–19. doi: https://doi.org/10.1002/rsa.21070.

[12] Peter Keevash. “The existence of designs II”. Preprint (2018). doi: 10.48550/ARXIV.1802.059
00.

[13] C. St. J. A. Nash-Williams. “An unsolved problem concerning decomposition of graphs into tri-
angles”. Combinatorial Theory and its Applications III. North Holland, 1970, 1179–183.

[14] Simón Piga and Nicolás Sanhueza-Matamala. “Cycle decompositions in 3-uniform hypergraphs”.
To appear in Combinatorica. Preprint (2021). doi: 10.48550/ARXIV.2101.12205.

[15] V. Rödl, M. Schacht, M. H. Siggers, and N. Tokushige. “Integer and fractional packings of
hypergraphs”. J. Combin. Theory Ser. B 97.2 (2007), 245–268. doi: 10.1016/j.jctb.2006.05
.006.

[16] Amelia Taylor. “On the exact decomposition threshold for even cycles”. J. Graph Theory 90.3
(2019), 231–266. doi: 10.1002/jgt.22399.

https://doi.org/10.1007/s00373-005-0628-x
https://doi.org/10.1002/rsa.20915
https://doi.org/10.1002/rsa.20915
https://doi.org/10.1016/j.aim.2015.09.032
https://doi.org/10.1016/j.jctb.2016.07.010
https://doi.org/10.1016/0012-365X(92)90699-G
https://doi.org/10.1007/s00493-020-4046-8
https://doi.org/10.48550/ARXIV.1611.06827
https://doi.org/https://doi.org/10.1017/9781009036214.007
https://doi.org/https://doi.org/10.1017/9781009036214.007
https://doi.org/10.1017/S0963548320000449
https://doi.org/10.1002/9781118032718
https://doi.org/https://doi.org/10.1002/rsa.21070
https://doi.org/10.48550/ARXIV.1802.05900
https://doi.org/10.48550/ARXIV.1802.05900
https://doi.org/10.48550/ARXIV.2101.12205
https://doi.org/10.1016/j.jctb.2006.05.006
https://doi.org/10.1016/j.jctb.2006.05.006
https://doi.org/10.1002/jgt.22399


REFERENCES 35

(A. Lo, S. Piga) School of Mathematics, University of Birmingham, Edgbaston, Birm-
ingham, B15 2TT, UK

Email address: s.a.lo@bham.ac.uk, s.piga@bham.ac.uk

(N. Sanhueza-Matamala) Departamento de Ingenieŕıa Matemática, Facultad de Ciencias
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