CYCLE DECOMPOSITIONS IN i-UNIFORM HYPERGRAPHS

ALLAN LO, SIMON PIGA, AND NICOLAS SANHUEZA-MATAMALA

ABSTRACT. We show that k-uniform hypergraphs on n vertices whose codegree is
at least (2/3 + o(1))n can be decomposed into tight cycles, subject to the trivial
divisibility conditions. As a corollary, we show those graphs contain tight Euler
tours as well. In passing, we also investigate decompositions into tight paths.

In addition, we also prove an alternative condition for building absorbers for edge-
decompositions of arbitrary k-uniform hypergraphs, which should be of independent
interest.

1. INTRODUCTION

Given a k-uniform hypergraph H, a decomposition of H is collection of subgraphs
of H such that every edge is covered exactly once. If all these subgraphs are isomorphic
copies of the same k-uniform graph F', we say H has an F-decomposition, and that H
is F-decomposable. We refer the reader to the survey of Glock, Kiihn, and Osthus [3]
for a recent account on extremal aspects of hypergraph decomposition problems. Here
we investigate hypergraph decompositions into tight cycles.

Given ¢ > k = 2, the k-uniform tight cycle of length ¢, denoted by Cék), is the k-
graph whose vertices are {v1,...,vs} and its edges are {v;, vj41,...,v;4—1} for all i e
{1,..., ¢}, with the subindices understood modulo ¢. Given a vertex set S < V(H), we
define the degree degy (S) of S as the number of edges of H which contain S. Given
a vertex v € V(H), we define the degree of v as the degree of {v}. Given some 0 <
i <k, welet 0;(H) (and A;(H)) be the minimum (and maximum, respectively,) value
of degy(S) taken over all i-sets of vertices S. We call d;_1(H) the minimum codegree
of H and sometimes we will write just 6(H) if k is clear from context.

We say that a k-graph H is C{*)-divisible if |[E(H)| is divisible by £ and the degree of
every vertex of H is divisible by k. Clearly, being Cék)—divisible is a necessary condition
to admit an Cék)—decomposition, but in general it is not a sufficient condition. We are
interested in extremal questions of the sort: which conditions on the minimum degree
of large Cék)—divisible graphs ensure the existence of C’ék)—decompositions? Given a k-
graph F', we define the F'-decomposition threshold dr be the least d > 0 such that for
every € > 0, there exists ng such that any F-divisible k-graph H on n > ng vertices
with dx_1(H) = (d + €)n admits an F-decomposition.

In this paper, we are interested in (5(;2’“). For k = 2, k-graphs are just graphs, tight
cycles are just graph cycles, and minimum codegree is just minimum degree, and here
much more is known about the values of dc(». Barber, Kiihn, Lo, and Osthus [3]
show that dc(® = 2/3 and for each even £ > 6, 6c® = 1/2. Taylor [16] proved exact
minimum degree conditions which yield decompositions into cycles of length £ in large
graphs, for / = 4 and every even £ > 8. For odd values of ¢, the situation is different.
Joos and Kiihn [11] showed that oo = 1/2 + ¢, where ¢, is a sequence of non-zero
numbers depending on ¢ only, which satisfy ¢, — 0 when ¢ — co.

For k = 3, the last two authors [14] showed that dc® = 2/3 for sufficiently large /.
In fact, they show that the constant ‘2/3’ is also sharp for the more general problem
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of decomposing hypergraphs into tight cycles of possibly different lengths, which we
describe now.

A (tight) cycle-decomposition of a k-graph H is an edge partition of H into tight
cycles (of possibly different lengths). A condition which is easily seen to be necessary
to admit a cycle-decomposition is that the degree of every vertex of H is divisible
by k. We define the cycle-decomposition threshold 6§ )ie be the least d > 0 such
that for every € > 0, there exists ng such that any k- graph H on n > ng vertices
with dx—1(H) = (d + €)n such that every vertex of H is divisible by k£ admits a cycle-
decomposition. Note that 5£y)cle = 0 as every graph with even degrees admits a cycle
decomposition. For k = 3, the last two authors [11] showed that (5(ycle 2/3. Glock,

Kiihn and Osthus [, Conjecture 5.5] posed the following conjecture for k > 3.
Conjecture 1.1 (Glock, Kiihn and Osthus). For k > 3, 6%, < (k —1)/k.

cycle =

Cycle decompositions are also related with generalisations of Euler tours to hy-
pergraphs. An FEuler tour in a k-graph H is a sequence of (possibly repeating) ver-
tices vy - - - vy, such that each k cyclically consecutive vertices forms an edge of H,
and all edges of H appear uniquely in this way. Similarly, we define the Fuler tour
threshold (5]guler be the least d > 0 such that for every ¢ > 0, there exists ng such that
any k-graph H on n > ng vertices with 0;_1(H) = (d + €)n such that every vertex
of H is divisible by k& admits an Euler tour. Chung, Diaconis, and Graham [5] con-
jectured that every large Kff) such that every vertex of H has defree divisible by &
admits an Euler tour. Glock, Joos, Kiihn, and Osthus [0] confirmed this conjecture
and showed the existence of Euler tours in suitable hypergraphs by using results on
cycle decompositions, which in particular show ) < 1 for all k. For k = 2, it is easy
to see that 6@, = 1/2 (as 6(H) > |V (H)|/2 is needed to ensure that the graph H is
connected), and examples show that 6&).. > 1/2 holds for all k > 3 [6, Section 1.3].
The following conjecture for all k > 3 was posed.

Conjecture 1.2 (Glock, Kiihn, and Osthus [8]). For k =3, 6., < (k —1)/k.

It was first conjectured that 6. = 1/2 for all k > 3 in [6], but this was disproven
by the last two authors [14] by showing that 6&).. = 2/3.
Our main result bounds dc(* for every k > 2 and each sufficiently large £.

Theorem 1.3. For every k > 3 there exists an £y € N such that for every £ = £y it
holds that dc® < 2/3.

The case when k = 3 already appears in [I1]. For k > 4, we do not know if the
constant ‘2/3” appearing in Theorem 1.3 is best-possible. We discuss lower bounds in
Section 2.

In order to prove Theorem 1.3, we also find the decomposition threshold for tight
paths. Given ¢ > k > 2, the k-uniform tight path on ¢ wvertices, denoted by Pf(k), is
the k-graph whose vertices are {v1,...,v,} and its edges are {v;, vj+1,...,Vi+k_1} for
allie {1,...,—k+1}. A k-graph H is P{¥)-divisible if |E(H)| is divisible by £ —k + 1.
We prove that p® = 1/2.

Theorem 1.4. For every k>3 and £ > k +1, ép®) = 1/2.

Using the techniques we apply to prove our main result, we can give bounds on 5&,216
and 5£3uler, which in particular prove Conjectures 1.1 and 1.2 in a strong sense. In fact,

we also prove that both thresholds are always equal.
Theorem 1.5. For all k >3, 1/2 < 5k}, = Cyde < infrsp{dc™} < 2/3.

1.1. Proof ideas. Our proof uses the ‘iterative absorption’ framework to tackle de-
composition problems in hypergraphs; see [2] for a introduction. The proof of the main
result (Theorem 1.3) has three ingredients: an Absorber lemma, a Vortex lemma, and
a Cover-down lemma. The Vortex lemma gives a sequence of subsets V(H) = Uy 2
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Uy 2 --- 2 Uy, and Uy has size independent of n = |V(H)|. The Absorber lemma gives
a small subgraph A € H such that for any Cék)—divisible leftover L, the k-graph Au L
has a cycle decomposition. This reduces the problem to the search of a cycle pack-
ing in H = H — A which only has uncovered edges in U;. This is found using the
Cover-down lemma: in the ith step we find a collection of edge-disjoint cycles which
covers all edges in H'[U;] — H'[U;+1] but only uses few edges in H'[U;+1], this allows
the process to be iterated.

Our proof of the Cover-down lemma, requires a result of Joos and Kiihn on ‘fractional
decompositions’ [11], and a detour which finds and uses (tight) path decompositions.

Most of the work is required to prove the Absorber lemma. We follow the approach
of [14], where absorbers are built by first finding ‘tour-trail decompositions’ of the
leftover graphs. These decompositions consist on edge-disjoint subgraphs, each of
which forms a tour or a trail. It turns out that it is simple to build absorbers if the
leftover can be decomposed into tours. The goal is then to modify the leftover via
the addition of gadgets, these will suitably modify a given tour-trail decomposition in
steps, so that at the end no trails remain. We also prove an alternative condition for
the existence of absorbers, see Lemma 3.3, which should be of independent interest.

In this high-level description, this is the same outline used to find cycle decom-
positions when k = 3 in [14], but the proof for k& > 3 requires several non-trivial
modifications. This is specially true in the construction of the absorbers, which is way
more involved than in the k£ = 3 case, and can be considered the main new contribution
of the paper.

1.2. Organisation. In Section 2 we give new lower bounds for the C’}k)—decomposition
threshold, for certain values of k and /.

In Section 3, we establish a connection between the notion of transformers and
absorbers. In Section 4 we explain the iterative absorption method, including the
statements of their key lemmas. At the end of this section we prove Theorem 1.3.

Sections 5 to 9 are devoted to the proofs of the lemmas used in the iterative absorp-
tion. Section 5 contains the proof of the Vortex lemma. The proof of the Absorber
lemma is the main technical part of our paper, and its proof spans Sections 6, 7, and 8.
The proof of the Cover-down lemma appears in Section 9. We prove Theorem 1.4 in
Section 9.1.

In Section 10 we provide the necesary lemmas for the proof of Theorem 1.5. We
finish in Section 11 with remarks and questions.

1.3. Notation. Let [n] = {1,...,n}. Since isolated vertices make no difference in our
context, we usually do not distinguish from a hypergraph H = (V(H), E(H)) and its
set of edges E(H). For a subset U < V(H), we write H\U to mean the subgraph of H
obtained by deleting vertices in U. We write H[U] = H\(V(H)\U). For a k-graph G,
we write H—G = (V(H), E(H)\E(G)). We will suppress brackets and commas to refer
to k-tuples of vertices when they are considered as edges of a hypergraph. For instance,
for vq,...,vy € V(H), v1---v € H means that the edge {vi,...,v;} is in E(H). For
a vertex set S € V(H), the neighbourhood N (S) of S is the set of vertex sets T' <
V(H)\S such that SUT € H. Given U € V(H), define Ny (S,U) = Ngsou(S). The
degrees degy(S) and deg(S,U) correspond to [Ny (S)| and |Ng(S,U)|, respectively.
We suppress H if it can be deduced from context.

We also use the following notation. Given k£ > 2 and r > 1, and a k-graph H,
define 6")(H) to be the minimum of [N(e1) n N(ez) N ---n N(e,)| among all possible
choices of r different (k — 1)-sets of vertices eq,...,e,. More generally, given a set of
vertices U < V(H), we also define (") (H, U) as the minimum of |U n N(e1) n N(ez) N
-+ N(e,)| among all possible choices of r different (k — 1)-sets of vertices eq, ..., e,.

We will use hierarchies in our statements. The phrase “a « b” means “for every b >
0, there exists ag > 0, such that for all 0 < a < ag the following statements hold”. We
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implicitly assume all constants in such hierarchies are positive, and if 1/a appears we
assume ¢ is an integer.

Suppose that Lemma A states that a k-graph H contains a subgraph J. We write
‘apply Lemma A and obtain edge-disjoint subgraphs Ji,...,Jy’ to mean that ‘for
each i € [{], we apply Lemma A to H — UJE i—1]Jj to obtain J;’. Note that H —
Ujepi—17 /5 will also satisfy the condition of Lemma A, but we will not check them
explicitly. Furthermore, suppose that we have already found a subgraph H’ of H
and we say that ‘apply Lemma A and obtain subgraph J such that V(J)\U are new
vertices’ to mean the ‘we apply Lemma A to H — (V(H')\U) to obtain J .

2. LOWER BOUNDS

Given a k-graph H, let Co(H) be the family of all C( )in H and Ci(H,e) the family
of f-cycles containing a fixed edge e € H. A fmctzonal C( )—decomposztwn of H is a
function w : C/(H) — [0, 1(] such that, for every edge e € H, Y ccc,(ryw(C) = 1.
We define the fractional C;" -decomposition threshold 5C§k> be the least d > 0 such
that, for every ¢ > 0, there exists ng such that any k-graph H on n > ng vertices
Wlth 0k—1(H) = (d + €)n admits a fractional C’( -decomposition.

Here, we give lower bounds on the parameter (5(;};6) Joos and Kiihn [11] showed
that 50516) > % + W holds for each k > 2 and ¢ not divisible by k. We give
new bounds, which remove the dependency on k.

Proposition 2.1. Let 1 < i < k < £ with £ not divisible by k and r = k/ged(k, ). Let
Itee = {0 <i<k:i#£0modr}, Ioqa = {0 <i<k:iz0mod2} and [eyen = {0 <
i <k:i=0mod2}. Then

v bl 205 O)

i€lfreeNlodd 1€l ¢ree M leven

Lo
2 T4l —1)

Our constructions are based on [9, Proposition 3.1]. Given vertex-disjoint sets A, B
and 0 <1 < k, we let Hi(k)(A, B) be the k-graph on A u B such that e € H; if and only
if |e n B| = i. We need the following observation.

Proposition 2.2. Letl <i<k</{andd= gcd(k: 0). Let A and B be disjoint vertex
sets, and let H; = Hl(k)(A, B). Then H; is C'( ) -free for all k — i % 0 mod k/d.

Proof. Suppose £ > k is such that v;---v, are the vertices of a copy of C}k) in H;.
Letting d = ged(k,{), we shall show that k/d divides k — i. For all j € [{], let
¢; € {A, B} be such that v; € ¢; and let ¢y, ; = ¢;. Note that ¢; = ¢4 for all j € [€].
Hence, ¢jq = ¢; for all j € [¢]. Thus

E—i={vi,...;upp n Al = |{jelk]:¢; = A} e{k/d,2k/d,... k}
as required. |

We say a k-graph H on n vertices admits an n-approximate F'-decomposition if it
has a collection of edge-disjoint copies of F' covering all but nn* edges. By a result of
R6dl, Schacht, Siggers, and Tokushige [15], any bound on the codegree of k-graphs not
containing n-approximate decompositions, for arbitrary small 7, is essentially equiva-
lent to bound the corresponding numbers for fractional Cé -decomposition. Thus, we
will focus on the former.

Proof of Proposition 2.1. Let n be sufficiently large. Let A and B be disjoint vertex

sets each of size |n/2| and [n/2] respectively. For each 0 <1i <k, let H; = H; (k )(A, B).
Note that

(2.2) %' = ;(f) +o(1).

k
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Let d = ged(k, £). Since { is not divisible by k, then r = k/d > 1. It holds that k—i #
0 mod r if and only if 4 # 0 mod r. Let Hyqq = Uz‘eloddHi and Heven =J;ey,,. Hi- Note
that d( odd) 0(Heyen) =n/2 — k. From (2.2) it follows that both |Hoqq| and |Heven|
have size (3 + o(1))(}).

Let H! 44 = Uiefoddﬂlfree H; and H'

even

= Uictownnis.. Hi- Note that by (2.2), we

have
H' 1 k H! 1 k

(2.3) | gdd‘ = % > <> +0(1) and |ni| = > () +o(1).
(k) i€load N free ¢ (k) i€leven N ree !

Observe that given odd numbers i # j there no tight path in Hyqq connecting an
edge from H; with an edge of Hj;. Therefore, Proposition 2.2 yields that no edge
in H!,, is contained in a copy of C’ " in Hgyqq. Let

2|H g4l
-1

to be a sub-k-graph of Heyen such

and suppose n > 0 is given. Consider HZ .,
that 0(Hge,) = (p — 4n)n/2 and

(2.4) | Hevenl < (p = 2.1) [ Heven| < [Hgqql/(€ —1) — nn*.
Such a sub-k-graph can be obtained by taking random edges from Heye, independently
with probability p — 3n.

We claim H = Hodd v HZ,., does not admit an n-approximate C( )—decomp081t10n
Since no edge of H 4 is contained in copy of C," in Hyqq, each C’ containing
an edge in H! , must contain at least one edge in H Therefore, 1f H contains

even*
an n-approximate C, F -decomposition, then we have

(_1>’ even’ | dd‘_ ’H’ | dd‘

contradicting (2.4). Note that 0(H) = 6(Hogq) + 0(HZE,,) = (1 +p —4.5n)n/2. There-

fore, from (2.3), letting n tend to infinity, and 7 tend to zero, we deduce that

1 1 1 k
(SC(k) hm 5(1 +p) = 5+m 2 <Z>

iejoddﬁlfree
An analogous construction, selecting H;; S Hoqq as a random set of the appropriate

size with respect to H.,.,, gives that

Sl 1 "
5* — .7, a~ Z ( '>’
2 2k (£ - 1) i€l even N ree !

and therefore we have

{ s (s ()

1€1oad M free i€1even N free

which gives the first inequality of (2.1).
To bound this last term, note that

k k k _
s 0,5 (5 (e
i 1<i<k,i%%£0 mod r

1€load M free i€leven N free

The last inequality follows since X ;c(x1: i=0 mod r (’f) counts the number of sets of [k]
of size divisible by r, and we recall that » > 1. If P, < P([k]) is that family, then
X +— XA{1} is an injection from P, to P([k])\P;, and thus |P,| < [P([k])|/2 = 2~

We deduce that max {Z k) Dic Lovon~ Iivee (k)} > 2F=2 which then yields

1€loga N Ifree (l ’ 1

* >1+;
o =2 T ae—1)
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as desired. |
We can get better bounds for some choices of k and ¢ by looking at (2.1) in detail.
Corollary 2.3. Let 3 < k </ with £ % 0 mod k. Then
1+ 2(6%1 if k/ged(l, k) is even,

[ -
et {5+§in if ged(f, k) = 1 and k is odd.

Proof. Let d = ged(k,¢) and k = dr. If r is even, then I,qq N Ifee = Ioaq- Therefore

ky _ kY _ ok—1 1 1 ..
Ziefoddﬂlfree (Z) = Zielodd (2) = 2" 50 (%Lgk) = Ry follows from Proposition 2.1.

If d =1, then r = k, and therefore Ifee = [k — 1]. This implies >, (’f) =2F_2

and therefore maX{ZieloddmIfm (];)’Zielevenmlfm (’;)} > 281 _ 1 then ‘%W > % +

1—2-k
2(0—1)

again follows from Proposition 2.1. |

Finally, we can get bounds for the non-fractional thresholds 5C§k) by modifying
the k-graphs we construct in the proof of Proposition 2.1 in such a way that they also
are C}k)-divisible. By removing at most £ —1 edges it is easy to make the total number
of edges divisible by ¢, so the only real challenge is to make every degree divisible
by k. We prove later (Corollary 9.11) that, for each ¢ > 0 (assuming n sufficiently
large), we can find FF € H whose number of edges is divisible by ¢, §x_1(H — F) >
0k—1(H) — en, and for each v € V(H), degy_r(v) = 0 mod k. Thus the graphs we
construct in Proposition 2.1 can be modified to be C’ék’)-divisible, which implies the
following bounds:

Corollary 2.4. For all 3 < k < /¢ and ¢ not divisible by k,
@6@@2%+ﬂ%ﬂ,

(ii) if k/ged(¢, k) is even, then o > 3+ ﬁ, and

(iil) if k/ged(4, k) = 1 and £ is odd, then dcr) > T+ %&2_71];

3. ABSORBERS VERSUS TRANSFORMERS

In this section, we introduce absorbers and transformers, which are essential tools
in the iterative absorption technique. We prove that the existence of absorbers is
essentially equivalent to the existence of transformers, and we work with the latter
concept in the rest of the paper. We state our results in a general fashion, that is,
for F-decompositions into general hypergraphs, not just cycles.

Let F and G be k-graphs. We say that a k-graph A is an F-absorber for G if
both A and A U G have F-decompositions and A[V(G)] = . Note that if there is
an F-absorber for G, then G is F-divisible. The following definition describe k-graphs
containing absorbers in a robust way.

Definition 3.1. Let  : N — N be a function. We say that a k-graph H on n vertices
is (F, mq, mw,n)-absorbing if, for all F-divisible subgraphs G of H with |V (G)| < m¢
and W <€ V(H)\V(G) with [W| < mw —n(|V(G)|), H\W contains an F-absorber A
for G with |A| < n(|V(G))).

We will use so-called transformers to construct absorbers. The réle of transformers
allows us to replace G with a ‘homomorphic copy’ G’ of G. Given k-graphs G and G,
a function ¢ : V(G) — V(G’) is an edge-bijective homomorphism from G to G’ if we
have G’ = {¢p(v1)...d(vg) : v1...vx € G}. A (G,G'; F)-transformer is a k-graph T
such that T'U G and T U G’ are F-decomposable and T[V(G)] u T[V(G')] is empty.
The following definition is analogous to Definition 3.1 but for transformers.

Definition 3.2. Let  : N — N be an increasing function with n(z) > z. We
say that a k-graph H on n vertices is (F,mg, mw,n)-transformable if, for vertex-

disjoint homomorphic F-divisible subgraphs G,G’ of H and W < V(H)\V(G u G')
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and |V(GQ)|, V(G| < mg and |[W| < mw — n(|V(G)]), H\W contains a (G,G’; F)-
transformer 7" with |T'| < n(max{|V(G)|, |V (G")]}).

It is not difficult to see that if a k-graph H is (F, mg, my,n)-absorbing, then H is
also (F,mg, my, 2n)-transformable (see proof of Lemma 3.3). In fact, the converse is
true with different constants as long as there are enough copies of F' in H.

Lemma 3.3. Let n: N — N be an increasing function with n(z) = x and my, mg =
0. Let F be a k-graph and uy---ug € F. Let H be a k-graph such that, for any
distinct vy,...,vp € V(H) and W < V(H)\{v; : i € [k]} with |W| < mw, (H v
{vi,...,v})\W contains a copy of F with u; mapped to v; for all i € [k]. Then
if H is (F, m¢g, mw,n)-absorbing then H is (F, mq, mw, 2n)-transformable. Moreover,
if H is (F,mg, mw,n)-transformable, then H is (F,mg, mw,n')-absorbing for some
increasing function ' : N — N with ' (z) > x.

For k-graphs G and H and ¢ € N, we write G + ¢H to be the vertex-disjoint union
of G and ¢ copies of H. We now show that, by adding ¢ vertex-disjoint copies of F
to G, the k-graph G + ¢F has an edge-bijective homomorphism to K,(,lf). We will
require the following theorem regarding the existence of F-decompositions in high
codegree k-graphs. Recall that §p is the F-decomposition threshold.

Theorem 3.4 (Glock, Kiihn, Lo and Osthus [7]). For all k-graphs F', there exists a
constant cp > 0 such that op <1 — cp.

A subsequent alternative proof of Theorem 3.4 was given by Keevash [12].

Lemma 3.5. Let F' be a k-graph. Then, for all t € N, there exist integers ¢ = q(t)
and m = m(t) such that, for any F-diisible k-graph G with |G| = t, there exists an
edge-bijective homomorphism from G + qF to K,,’f .

Proof. Let 1/m « 1/t,1/k be such that K is F-divisible. Let G’ be an isomorphic
copy of G with V(G') < V(Ky(r]f)). Clearly there is an edge-bijective homomorphism
from G to G'. To prove the lemma, it suffices to show that H = K,, — G is F-
decomposable and set ¢ = |H|/|F|. Both G and K are F -divisible, so is H. Note
that |V(G)| < k|G| < kt, so 6(H) = (1 — kt/m)m. By Theorem 3.4, H has an
F-decomposition. |

We now sketch the how to construct absorber from transformers, that is, the back-
wards direction of the proof of Lemma 3.3. Let G be an F-divisible k-graph with ¢
edges. By Lemma 3.5, G + ¢F has an edge-bijective homomorphism to Kr(n). Hence
there exists a (G +¢F, K,(f); F)-transformer 7. Note that 71 = T'uqF is a (G, K,g,’f); F)-
transformer. Since m and ¢ only de}?end on t = |G|, by replacing G with s = t/|F|
copies of F', we can find a (sF, K,(n);F%—transformer T5. Then T u Ky(r]f) u Ty is
a (G, sF; F)-transformer and so 77 U Kr(r]f u Ty is an F-absorber for G.

However, an obvious obstacle with this approach is that H may not contain any
such large clique K,(,’f). To overcome this problem, we consider the extension oper-
ator V (which was introduced in [7, Definition 8.13]). Fix an edge u;---ux € F.
Consider any distinct vertices vy,...,v, € V(H). Define Vi, 4, (v1...v5) to be a
copy of F' —uy - - - ug, with v; playing the roles of u;. For a k-graph G on V(G) € V(H),
define Vg y, ..., (G) to be the union of | .. VFu,.u, (€), where the ordering of each
edge e € G will be clear from the context and V(Vpy, ... (€))\e are new vertices.
Note that G U Vg, ..., (G) is F-decomposable. The hypothesis of Lemma 3.3 im-
plies that Vg, . (G), VEu - (K,gff)) and Vg, .., (sF) exist. We then construct
transformers between them to obtain an F-absorber for G.

Proof of Lemma 3.3. First suppose that H is (F, mq, mw,n)-absorbing. Let G and G’
be vertex-disjoint F-divisible subgraphs of H with |V(G)|,|V(G’)| < mg. Let W <
V(H\V(G v G") with [W| < mw — 2n(max{|V(G)|,|V(G")|}). By the property of
being (F, mq, mw,n)-absorbing, H\(W u V(G’)) contains an F-absorber A; for G
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with 41[V(G)] = & and |V (A1) < n(|[V(G")]). Also, H\(W u V(A;)) contains an F-
absorber Ag for G' with Ao[V(G')] = & and |As] < n(|[V(G')]). Let T = A; U As.
Note that T'u G and T'u G’ have F-decompositions and T[V (G u G')] = &. Hence T
is an (G1, Gg; F')-transformer. Moreover,

V(T)| = [V(A)]+ [V (A2) | < n([V(G)]) + n(IV(G)]) < 2n(max{[V(G)], [V (G)]}).

So H is (F,mqg, mw, 2n)-transformable.
Now suppose that H is (F, mg, my,n)-transformable. Let ¢(¢) and m(t) be the
functions given by Lemma 3.5. Let 1’ be the function given by

@) =20 (i)

We now show that H is (F,mg, my,n’)-absorbing.
Let G be an F-divisible subgraph of H with |V(G)| < mg and W < V(H)\V(G)
with [W| < mw —n/(mg). Let

o = (). my = (G w= (") e

Let (g1 + q2)F be in H\(V(G) u W), which exists by our assumption of H. Let
G1 =G+ ¢ F and G3 = ¢oF. Hence, G and Gj3 are vertex-disjoint and are in H\W.
Let V! = {v],...,v5,,} € V(H)\(V(G1 u G3) u W). Consider a K,S’;) on V', which
may not exist in H. By Lemma 3.5, there exists an edge-bijective homomorphism ¢;

from G; to KW for j € {1,3}. Order edges in K% into v, ...v; such that i; <
- < ix. By ¢1 and ¢3, this implies an ordering on all edges of G; U G3. Fix an

edge uj ---ug € F. Let
Gll = vF,ul...uk (Gl)a ,2 = vF,ul...uk (Kr(rlfl))a é = vF,ul.A.uk (GB)
Let ¢ = |[V(F)|("}}). Note that

vl < el - i) ) - ¢
By the property of H, H contains vertex-disjoint G, G, G such that G[V(G;)] = &.
Since H is (F,mg, mw,n)-transformable, H\(W u V(G%)) contains a (G}, G5; F)-
transformer 77 with |V(T1)| < n(€). Similarly, H\(W v V(G}) v (T1\V (GY))) contains
a (Gh, G; F)-transformer Ty with |V (Ts)| < n(¢).
Let A= (Gi—G)u Gl uTi vGHU Ty Gy UGs. Recall that (G1 — G), Gy u GY,
5 U G3 and G3 have F-decompositions. Hence

AVvG=(GEuG)) u(TyuGH) U (Ty UGy uGs and
A=(G1—-G)u (G uT) u(GyuTh) u(GyuGs)
are F-decomposable. Therefore A is an F-absorber for G. Note that A[V(G)] =
Ti[V(GQ)] € Th[V(G))] = & and
V(A < [V(T)] + [V(T)| < 2n(0) = 7' (V(G))).
Hence H is (F, mg, my,n')-absorbing. [ |

4. ITERATIVE ABSORPTION AND PROOF OF THE MAIN RESULT

The method of iterative absorption is based on three main lemmas: the Vortex
lemma, the Absorber lemma, and the Cover-down lemma. We state these lemmas
while explaining the general strategy, then we will use them to prove Theorem 1.3. We
proof of these lemmas are in Sections 5-9 (Sections 6-8 are dedicated to the Absorber
lemma).

A sequence of nested subsets Uy 2 - - - 2 U, of vertices of a k-graph H is a (d,£,m)-
vortex for H if
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(V1) Uy = V(H),

(V2) for each i € [t], |Ui| = |€|Ui-1l],
(V3) U] = m,

(V4)

S@(H[U;]) = 6|Uy], for each 0 < i <t and
@) (H[U;],Uis1) = 8|U;s1|, for each 0 < i < t.

The Vortex lemma gives us the existence of vortices with the right parameters.

Lemma 4.1 (Vortex lemma). Let 6 > 0 and 1/m’ « &, 1/k. Let H be a k-graph
on n = m' vertices with ) (H) = §. Then H has a (§ — &,&, m)-vortex, for some
[Em/] < m < m'.

Using the properties of such a vortex, we will iteratively find C’ék)—packings covering
the edges from H|[U;] in every step, without taking too many edges from the following
sets Ujy1,...,U; in the vortex. The Cover-down lemma will provide the existence of
those packings in every step.

Lemma 4.2 (Cover-down lemma). For every k > 3 and every o > 0, there is an {y € N
such that for every pu > 0 and every n,f € N with £ = {y and 1/n < u,a the following

holds. Let H be a k-graph on n vertices, and U < V(H) with |U| = |an|, and they
satisfy

(CDy) 6@ (H) = 2an,

(CDy) 6@ (H,U) = a|U| and

(CDs3) degy () is divisible by k for each x € V(H)\U.
Then H contains a C’ék)—decomposable subgraph F < H such that H — H[U] <€ F
and Ag_1(F[U]) < pn.

Finally, after repeated applications of the Cover-down lemma, we only need to con-
sider the edges remaining in H|[U;]. For these last edges, we apply the Absorber
lemma. This lemma says that the k-graph H is (C’tfk), m, m,n’)-absorbing, and there-
fore, it contains an absorber for any possible C,;-divisible k-graph left as a remainder
in U; (which is of size m).

Lemma 4.3 (Absorber lemma). Let 1/n « ¢ « 1/¢,1/k,1/m with k = 3 and ¢ >
2(k? — k) + 1. Let H be a k-graph on n vertices with 6 (H) = 2en. Then H is
(C’Ek ,m,m,n')-absorbing for some increasing function ' : N — N satisfying n'(z) = x
and independent of € and n.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We divide the proof into three steps: setting the vortex and
absorber, covering down, and using the absorber to conclude. We suppose ¢, £, m/, ng
are chosen according to the following hierarchy: 1/ng « 1/m’ « €,1/¢ « 1/k.

Let H be a C{¥)-divisible k-graph on n > ng with &1 (H) > (2/3+8¢)n and observe
that this immediately implies that 6 (H) > 8en and that 6)(H) > (1/3 + 8¢)n. To
prove the lemma, it is enough to show that H has a Cék)—decomposition.

Step 1: Setting the vortex and absorber. By Lemma 4.1, we obtain a (1/3 — 7e,e,m)-

vortex Up 2 --- 2 Uy in H, for some m satisfying |em’| < m < m/.
[U

Let £ be the set of all C{*)-divisible subgraphs of H[U;]. Clearly, |£] < 2(%) < om*,
Let L € £ be arbitrary. Clearly, 6©)(H — H[U,]) > 7en. By Lemma 4.3 and the choice
of constants, we deduce H — H[U;] is (C{¥), m, m,n’)-absorbing for some increasing
function 1’ : N — N which satisfies n/(z) > 2. Thus, H — H[U;] contains an C{*)-
absorber Ap, in H', with Ap[U;] = & and |AL| < n'(m). We iterate this argument,
finding edge-disjoint absorbers A;, € H — H[U;], one for each L' € £. This indeed
can be done, since in each step, by removing all the absorbers found so far, we remove
at most |L|n’ (m) < en/3 edges overall. Thus H — H[U;], after removing the already
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found absorbers, still satisfies 6©) (H — H[U,]) = 6en and thus Lemma 4.3 can still be
invoked.

Let A = Uper A & H — H[Uj] be the edge-disjoint union of all absorbers. As
argued before, A contains at most en/3 edges in total. By construction, A is Cék)—
decomposable, and for each L € £, Au L is Cék -decomposable. Let H' = H— A. Note
that 0x_1(H') = (2/3+6e)n and Uy = --- 2 Uy is a (1/3 + be, e, m)-vortex for H' (this
is because we have ensured A € H — H[U;]). Since H and A are C{*)-divisible, H' is
also C’}k)—divisible.

Step 2: Covering down. Now we want to find a C}k)—packing in H' which covers all
edges in H'— H[U;]. For this, we proceed as follows. Let U1 = ¢J. Foreach 0 < i </
we will find H; € H'[U;] such that

(a;) H’ H; has a C{®-decomposition,

(bi) o ( i) = (1/3 + 3¢)|Uil,

( ) (HZ,U,_H) (1/3+3€)’Ui+1‘, and

(di) Hi[Uit1] = H'[Uisa].

For i = 0 this is done by setting Hy = H'. Now, suppose that for 0 < i < £ we
have found H; © H'[U;] satisfying (a;)—(d;), we construct H; 11 S H'[U;11] satisfying
(ai+1)~(di+1). By (a;), H; is C{F)-divisible. Let H! = H; — H;[Ui12]. By (bi)—(c;)
and |Usyo| < Uiy 1| < €%|U;|, we have

(C1) §@(H)) = (1/3 + 2¢)|Us),

(C2) 6@(H!,Uit1) = (1/3 + 2¢)|Uj41], and

(C3) degp(x) is divisible by k for each x € U\Ui41.

Now we apply Lemma 4.2 with 1/3, ¢, €5, |U;|, H! and U;4+1 playing the roles of
the parameters «, ¢, u, n, H and U. By domg so, we obtain a Cék decomposable
subgraph F; € H! such that H! — H![U;+1] € F; and Ay_1(Fi[Uit1]) < 9|05

We let H; 11 = H [Uit1] — E, and we now show that it satisfies the requu"ed proper-
ties. Since H' — H;;1 is the edge-disjoint union of H' — H; and F; and both are C}k)—
decomposable, we deduce that (a;+1) holds. Note that we have Ap_1(F;[U;+1]) <
e8|U;| < e*|U;41| < €|U;41|. From the definition of (1/3+5¢, e, m)-vortex for H', we de-
duce that 6@ (H'[U;41]) = (1/3+5¢)|Uiv1| and 6@ (H'[Us41], Usr2) = (1/3+5¢)|Usal.
Using this, we are able to deduce that 62 (H/, ;) = 6@ (H'[U;41]) =281 (F;[Uis1]) =
(1/3 + 5 — 2¢)|Ui1| = (1/3 + 3¢)|Uit1|, and similarly we have §@)(H! ;,Ujso) >
(1/3 + 3¢)|Uit2|, This shows that (b;+1) and (c;4+1) hold. Finally, since F; € H} =
Hi - HZ[U1+2] we have that Hi+1[Ui+2] = Hl[Uz+2] = H/[Ui+2], and therefore ( i+1
holds.

At the end of this process, we have obtained Hy & H'[U;] such that H' — H; has
a C}k)—decomposition.

Step 3: Finish. Since H' and H' — Hy; are C{®-divisible, we deduce H, < H'[U;]
is C(F)_divisible. Therefore, H; € £, and by construction we know that H; u A has
a CfF)-decomposition. Thus H is the edge-disjoint union of H; U A and H' — H; and

both of them have Cék)—decompositions, so we deduce H has a Cék)—decomposition as
well. |

Vv

5. VORTEX LEMMA

We prove Lemma 4.1 by selecting subsets at random (cf. [2]).

Proof. Let ng = n and n; = |én,;_1| for all i > 1. In particular, note n; < &'n. Let ¢
be the largest i such that n; > m’ and let m = nyy 1. Note that |Eém/| <m <m/.
Let & = 0 and, for all 7 > 1, define & = &_1 + 2(¢'n)~ /3. Thus we have

B ne)-1/3
€0 = 201/ Z “13)i < 9713 S (e 1) < 2( 55) s
€[t] ieN
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where in the last inequality we used 1/m’ « £ and n = m’.

Clearly, taking Uy = V(H) is a (§ — &y, &, np)-vortex in H. Suppose now we have
already found a (6 — &—1,§,n;—1)-vortex Uy 2 --- 2 U;—1 in H for some i < ¢ + 1.
In particular, 6@ (H[U;]) = (6 — &_1)|Ui|. Let U; < U;_1 be a random subset of
size n;. By standard concentration inequalities, with positive probability we have
SO(H[U)) = (0 — &1 — ny P)|Ui] and 6@ (H[U; 1], U:) = (6 — &1 —n; U,
Since &_1 + n;l/g < &;, we have found a (6 — &, &, n;)-vortex for H. In the end, we

have found a (6 — &1, &, ny1)-vortex for H. Since m = nyyq and 41 < &, we are
done. |

6. TRANSFORMERS I: GADGETS

In this and the next two sections we prove Lemma 4.3, the Absorber lemma. Fol-
lowing Lemma 3.3, it is enough to find transformers instead of absorbers. In this part,
we introduce gadgets, which will be building blocks of our transformers.

A E-uniform trail is a sequence of (possibly repeated) vertices such that any k
consecutive vertices form an edge, and no edge appears more than once. A k-uniform
tour is a k-uniform trail v ---v; such that v; = v;_g144 for i € [k — 1]. Let H be
a k-graph. A tour-trail decomposition T of H is an edge-decomposition of H into
tours and trails. Note that every k-graph has a tour-trail decomposition, namely,
considering each edge of H as a trail (by giving to it an arbitrary ordering). A tour
decomposition is a tour-trail decomposition consisting only of tours. When it comes
to the construction of absorbers, it is of great help to work with remainder subgraphs
which admit tour decompositions. Indeed, it is straightforward to find edge-bijective
homomorphisms between tours and cycles.

To construct absorbers, we will prove that actually any Cék)—divisible k-graph can
be augmented to a new, not-so-large, subgraph which does have such a tour decompo-
sition. This will be done in Section 7, see Lemma 7.1. In this section, we will describe
certain small subgraphs which we will call gadgets. The augmented subgraph which
we mentioned will be built as an edge-disjoint union of gadgets.

6.1. Residual graphs. Consider k£ € N to be fixed. Now we introduce the terminology
we need to describe the gadgets. Let P = vivo---v; be a trail. We define the ends
of P to be the ordered (k — 1)-tuples vg_1vg_o---v1 and vi_jioVs 13- -ve. We
denote D(P) be the set of ends of P. Let T be a tour-trail decomposition on vertex
set V. We define the residual di-(k — 1)-graph D(T) of T to be the multiset {D(P) :
Pisatrailin 7}. Thus D(T) consists of ordered (k — 1)-tuples of vertices in V,
possibly counted with repetitions.

For i € [k—1] and a vertex v € V, let p7 ;(v) be the number of ordered (k—1)-tuples
in D(T) with v being the ith vertex. We say that T is balanced if, for all v € V' and
ielk—1],

(6.1) p7,i(v) = PT k=i (V)-
We omit 7 from the subscript if it is known from the context.

Observe that if vy ---vg_1,v5—1---v1 € D(T), then there are trails P;, Pj € T that
can be merged into a trail (if ¢ # j) or tour (if ¢ = j) with edge set E(P; u P;). Thus
there is another tour-trail decomposition with less trails than 7, which is obtained
from 7 by removing P;, P; and adding the tour or trail born from joining F; and P;.

We will abuse the notation by calling the resulting tour-trail decomposition by 7. This
merging procedure will be indicated by

D(T) = D(T)\{’Ul e Vp—1,V—1 - - ’Ul}.
Given a vertex x € V and a k-tuple y =y - - - yi, for every i€[k] we define

ri(y, ) = Y1 Yim1TYit1 - Yk, and si(y) = {y1 - Yim1Yie1 - Uk} -
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In words, 7;(y, =) replaces the ith vertex in y with the vertex x, whilst s; simply skips
the ith vertex of y. Moreover, we define the reverse of y as y~! =y ---y;. Finally,
given a permutation o of [k] we write o(y) for the tuple y, (1) Yo(k)-

Given vertices z,2’ € V and (k — 1)-tuples y = y1 - yp—1 and y' = ¢} -+ -y, we
define the following sets of (k — 1)-tuples:

~(k—1
Sy 2,2') = (Y1 YA BYist - Yty Ykt - Vi1 T Wit -1}

= {ri(Y7 .ZU), (TZ'(Y7 x/))_l} and
Vv o) = 5 V) 0 5yl )
= {Ti(yv SL‘), ri(yla J"/)v (Ti(Ya 1"/))_1’ (Ti(y/7 ‘T))_l}’

For a k-tuple y (instead of a (k — 1)-tuple), it will be convenient to consider the
set S’i(k_l)(y, x,2’") with the same definition but omitting the last element of the tu-
ple yi. More precisely, given a k-tuple y we define

y,z,z') = §Z-(k_l)(8k(Y),fU,$') = {ri(se(y), @), ri(se(y), ") '},

S
An analogous definition holds for Ti(k_l)(y,y’ ,x,x'), where y and y’ are k-tuples.
Since k£ will be always clear from the context, we will omit it in the notation.

The two types of Cék)—decomposable k-graphs to be constructed will be Bj(x,z’) in
Corollary 6.3 (which we call ‘balancer gadgets’) and T;(y,y’, z, ') in Lemma 6.6 (which
we call ‘swapper gadgets’). This last swapper gadget has a trail-tour decomposition
whose residual digraph is exactly T;(y,y’,z,2’). Essentially, the main properties of
the gadgets are:

e The role of balancer gadgets Bj(x, ') is to enable us to adjust p;(z) —pr—1—;(z)
without affecting other vertices in V(H)\{z, 2’}. Hence, by adding edge-disjoint
copies of balancer gadgets, the resulting tour-trail decomposition 7 will be
balanced (see Lemma 7.3).

e Suppose now 7 is balanced. Consider z € V(H) and 1 < j < k/2, we can now
pair the members of D(7T) containing x into pairs (y,y’) such that x is the jth
vertex in y and (k — 1 — j)th vertex in y’. This is possible, as 7T is balanced.
The swapper gadget T;(y,y’,z,2") will enable us to ‘replace’ z with a new
vertex x’ in both y and y’. By repeated applications of this gadget, this will
allow us to convert 7 into a tour decomposition (see Lemmas 7.6 and 7.10).

Throughout this section, given a tight cycle C' = vy ---vy, we often consider a
trail decomposition of C' consisting of two trails v,(j) - v, and C — vy v =
vy -+ vpvy -+ - Vg—1 for some permutation o of [k]. Given a trail decomposition T =
{P1,...,Ps}, for ease of checking, we often write D(7) = D(Py) u --- v D(Ps) before
merging some of the trails in 7, that is, deleting pairs in D(7) of form {y,y~'}.

The next lemma finds many trails of prescribed length which connect any given pair
of ordered (k — 1)-tuples. It follows from [! 1, Lemma 2.3].

Lemma 6.1. Let 1/n « p « e « 1/0,1/k withk = 3 and £ = k*—k. Let H be a k-graph
on n vertices with 6 (H) = en. Then, for every two (k — 1)-tuples x = vy ---vp_1
and 'y = vpy1 - Vrk—1, H contains at least pnéikJrl trails vy ---vpyrp—1 on £ edges,
each of them with no repeated vertices, except possibly those already repeated in x andy.
In particular, if x,y are disjoint, then each of these trails is a tight path of length €.

6.2. Basic gadgets. We now construct a C’ék)—decomposable k-graph, which will be
a basic building block of all of the next gadgets.

Lemma 6.2. Let 1/n « ¢ « 1/0,1/k withk > 3 and £ > k*—k+1. Let H be a k-graph
on n vertices with 6 (H) = en. Let j € [k —1]. Let x,2’ € V(H) be distinct vertices
and'y be k-tuple of V(H) such that Y = {y; : i € [k]\{j}} € Nu(x) n Ng(z'). Then
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there exists a C§¥)-decomposable k-graph G = G(y,x,x') in H with |G| = 2¢ and a
tour-trail decomposition T; of G' satisfying

D(’E) = §j(Y?‘T7$/) Y §1(01(y),x/,:c) Y §j—1(02<Y)7x7x/)7
where o1 = j12---(j —1)(j + 1)+ -k and 09 = 2--- k1. Moreover, G[{z,2'} UY}] =
{zuY, 2’ UY}.

Proof. Orient Y Uz and Y u 2’ into yj - - yj+12yj—1 - - y1 and 2'y1 -+ Yj—1Yj+1 - - - Yk
By Lemma 6.1, there exist two tight cycles of length £,

Cl =Yk Yj+1TYj—1" " Y1Vks1 " Vg,

Cy = 2'y1 Yj1Yj+1 - YkUkt1 - - - Vg,
where v; and u; for kK + 1 < ¢ < £ are new distinct vertices. Let G = C7 u Cy. Define
the tour-trail decomposition 7 of C; u Cs to be

TY1 - -Yj—1Yj+1 - - - Yk,
T, = Yk—1-- - Yj+1TYj—-1 - --ylvk+1/- < UYk - Yj+12Y5-1 - - - Y2,
Yk - - - Yj+12 Yj—1 - - - Y1,
Y1 Yo 1Yiad - YhUkr 1 - - WY1 Y 1Yl - Yh—1

Hence, D(T;) consists of
Ye—1---Yj+1Yj-1--- N7, Yr—Yj=tr¥jFr—Y%,
D(T;) = Yr-- - Yj-12Yj+1 - - - Ye—1, Yk Yj+12Y5-1--- Y2,
! Y2 . --yjflflijrl < Yky o Yk—1-- ~yj+1$,yj71 <YL
Y=Y, TYL . YY1 Ykl
= Sj(y,l',l'/) Y Sl(Ul(Y),l',,ﬂj) v Sj(O’Q(Y),ZE,IL‘/),
where 0 = j1---(j —1)(j+1)---kand og = 2--- k1. [ |

v~

6.3. Balancer gadgets. Next, we will use Lemma 6.2 to construct a balancer gad-
get Bj = Bj(x,2’). As mentioned before, the main property of Bj(x, ') is to enable us
to increase p7 () —p7 k—1-i(z) (and decreasing pr 1(x) —pr x—1(x)) without affecting
other vertices in V\{x, 2'}.

Corollary 6.3 (Balancer gadgets). Let 1/n « ¢ « 1/0,1/k with k > 3 and ¢ >
k> —k + 1. Let H be a k-graph on n vertices with 6 (H) = en. Let j € [k — 1]\{1}
and let x,2' € V(H) be distinct. Then there erists a C}k)-decomposable k-graph B; =
Bj(x,2") with |B;j| = 2(j — 1)¢ and a tour-trail decomposition T, of B; such that for
all i € [k —1], pﬁx’i(v) —pﬁ/’k_i(v) =0 for allve V(H)\{z,z'} and
p17i(2) = prg—i(®) = Pryg—i(2’) = pr7i(a) = Dimj — Lick—j — J(Li=1 — Limp—1)-
Moreover, when k is even and j = k/2, kar/Tk/Q(v) = lyefg,ery mod 2.
Proof. We will proceed by induction on j. Let y be a k-tuple such that Y = {y; : i €
[k1\{7}} € N(z) n N(2). By Lemma 6.2, there is a C{¥)-decomposable k-graph G =
G,(y,x, ) such that
(i) Gj[{z, 2"} vY]={zuY, 2’ UY},
(i) |G;| = 2¢, and
(iii) there exists a tour-trail decomposition 7; of G; such that
D(E) = §j(y,x,x/) Y §1<01(Y), .T/, .’E) o §j_1(0'2(y),1',$/),

where 01 = j12---(j —1)(j+1)---k and 02 = 2--- k1.
Note that, for all i € [k — 1] and v € V/(H)\{z,2'}, we have pr; ;(v) — p7; r—i(v) = 0 as
each of S;(y,z,2'), Si(01(y),2’,z) and Sj(o2(y), z,«") contributes zero. Moreover,

p7;.i(%) = p1 k=i (%) = p1; h—i(2”) — p7; 0 (2)
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(6.2) = (Lizj — Limp—j) — (Liz1 — Limp—1) — (Limjo1 — Limp—jt1) -
For j = 2, we set By = G2 and we are done. For j > 2, there exists Bj_i(x,z') edge-
disjoint from G'j, by our induction hypothesis. Let 7}’_1 be the corresponding tour-trail
decomposition. Set Bj = G u Bj_i(z,2’). Clearly |B;| = |G| + |Bj—1| = 2(j — 1)
Note that Bj is C}k)-decomposable and has a tour-trail decomposition 7;’ =T;u 7}’71.
Together with (6.2), we deduce that ’7;’ satisfies the desired properties. The moreover
statement can be verified similarly. |

6.4. Swapper gadgets. The construction of swapper gadgets requires more steps.
We start with the following proposition.

Proposition 6.4. Let 1/n « ¢ « 1/0,1/k with k =3 and £ = k* —k + 1. Let H be
a k-graph on n vertices with §©)(H) > en. Let x,2' € V(H) be distinct vertices and y
be a (k — 1)-tuple of V(H) such that {x,2'} U {y;: 2 <i < k — 1} is of size k. Then,
there exists a vertex y, € V(H), a Cé )-decomposable k-graph Fy = Fy(y,z,2') in H
with |Fy| = 3¢ and a tour-trail decomposition T1 such that

D(T}) = §1(y,x,x’)u{xx’,xx’} if k=3,
VU Sy a!) O {aaly, . ysya gy if k>4

Moreover, Fi[{z,z',y2,...,ys—1}] = &.

Proof. Let yp € N(zy2 - -yp—1) " N(2'y2 - - - yp_1) 0 N(xx'ys - - - yp_1), which exists by
our assumption (here for k = 3 we consider y3---ys to be empty). By Lemma 6.1,
there exist three tight cycles of length ¢

!

Ci=y2 yYpX'Upy1 - - Up,
Co = 2y -+ YpVg41 - Vg, and
/

C3 =y3 YpZ' TWhy1 - - - Wy,

where u;, v;, w; are all distinct new vertices. Let T7 = C1 u Cy u C3. Consider the trail
decomposition 7q of 17 such that

e 3\

Y3 YRT U1 WY Yk
:U/yQ Yk,
T = ¢ Yoo YkVk+1- - 0exY2 - Yr—1, |
Y2 YL,
Ya o Yk TWhp1 - WeY3 - Y
Y3 ypoa’ )
and so
Yk—1- 22,  Hr—r,
x “ .. _
D(7-1) = Ye—Y2 Y2 Yk—1,
Ye—Y2, Y3—Y&%x,
'Y ys,  YIZTYRL,
By,  Ya- - yprz’ |
as required. [}

We construct a swapper gadget of the form Ty (y,y’, z,2’) in the next proposition.

Proposition 6.5 (Swapper gadget — case j = 1). Let 1/n « € « 1/¢,1/k such that
k=3 andl > k>—k+1. Let H be a k-graph on n vertices with 6 (H) = en. Consider
vertices x,x’' € V(H) and (k —1)-tuples y, y' of V(H) such that both {z,x'} U {y;: 2 <
i <k—1} and {z,2'} U {y}: 2 < i < k— 1} are of size k. Then there exists a C{F)-
decomposable k-graph Th = Ti(y,y’,x,2') in H a tour-trail decomposition Ty of Ty
such that

(i) Til{z, 2"} U {y1, - 1} WL, - Y1} = & and |Ti| = 20k and



CYCLE DECOMPOSITIONS IN k-UNIFORM HYPERGRAPHS 15

(11) D(7-1) = fl(Yvy/ax7aj/)‘

Proof. We apply Proposition 6.4 twice, the first time for x, 2’ and y as input and
the second time with 2/, z and y’ as input (we exchange the roles of z and z’). This
yields vertices yi,y;, € V(H) and two C’ék)—decomposable k-graphs F = Fy(y,z,z’)
and F' = Fi(y’, 2, z) such that

(a1) V(F) n V(F') < {z,2'} v {yi,y.: i€ [k — 1]} and |F| = |F'| = 3¢ and

(ag) there exists a tour-trail decomposition 7 of F U F’ such that

D(T) = Tuly,y' o', x) v {aayk - ya, ya--ypaa’, @'oyp vy vy ypa's),
where, for k = 3, we interpret the strings yy - - - y4 and y;, - - -} to be empty.
If k = 3, then D(T) = Th(y,y, 2, x)u{a'z, 'z, za’ , xa'} = T (y,y’, 2/, x), thus we are
done. So we may assume that k > 4. Note that if we have y; = ¢/} for all i € {4,..., Kk},
then D(T) is as desired. Thus, our aim is to ‘replace’ y;,y, with a new vertex z;, for
each i = {4, ..., k}. We do this in turns, as follows. For each i € {4, ... k}, let
zi€ N(wax'zg- - zicayi---yk) 0 N(za'zg - ziayi - yp)

be a new vertex (here we consider z4--- 23 to be empty). Consider the two ordered
edges z;- - zqxx'yy - --y; and z;... 22 vy; - -y, and apply Lemma 6.1 to obtain two
tight cycles of length ¢

i / i 7 g Lol /0 %
C" =z 2422 Yp - - YiVpyr - vp and D' = z; - - 42’2y, - Yy Wh g oWy

such that vé, w' are new vertices. Define a tour-trail decomposition 7% of C* U D* such

J
that
/ L 3 /
Zio1t ZATT Yt YiUp o UpZi ZATT Ykt Yi 1
/
Ti — R 24T XYk Yis
- . ! un ! V) T .. ! un s /
Zz—l"'Z4xxyk"'yiwk_i_l".wfzz'"Z4xxyk;"'yi+1
/1,0 /
zi...24mxyk...yi
Note that

/ /
Yi-o Y 24 ... 2—1, RZj---RATT Yk -+ - Yi+1,
/ /
D('Ti)—< Yi+l .- - YXT 24 ...24, Zj—1---24T XYk ...Y;,
- / / / ! en ! /
yé...ykx;’ﬂz;q...zi_l, ZZ'...Z4.Z'£Cyk,../.yZ-+1/,
L yi+1...ykxmz4...zi, Zi_l...241‘3§'yk...yi

Yioo Y’ T24 ... 21, Zi. . Z4TT Yk . Yisd,
_ yé...y}cxx’,/z4...zi_1, O zi...z4x’my%...yg+1
Zi—1+++-RAT XYk - - - Yy Yi+l - - YT 24 - - . 24,
Zie1... 248X Y . Y) Yipq - Ypd'T2a ... 2

When ¢ = k, then the second set can be simplified to an empty set. Note that
D(T%),---,D(T*) forms a ‘telescoping’ set of residual di-(k — 1)-graphs, so we de-
duce that

D( U Ti) = {aayy, vl Voo g, ayyeoya, yae gl

4<i<k
We are done by setting Ty = F U F' Uy, (C*'u D) and T1 = T U Uyesep, 7. W
We can now describe the general version of the swapper gadget T}, for all j € [k—1].

Lemma 6.6 (Swapper gadget — general case). Let 1/n < € < 1/¢,1/k such that k > 3
and £ = k> —k+1. Let H be a k-graph on n vertices with 6 (H) = en. Let j € [k—1]
and consider distinct vertices x,x' € V(H) and (k — 1)-tuples y, y' of V(H) such that
both {x,z'} U {y;: i € [k — 1]\{j}} and {z,2'} U {y.: i € [k — 1]\{j}} are of size k.
Then there exists a C}k)—decomposable k-graph T; = T;(y,y’,z,2') and a tour-trail
decomposition T; of T; such that

Q) Til{z, 2’} Oy, 1} O {Wh - Y1} = D and |Tj| < 37k and
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(i) D(T}) = Ty(y,y',z,2').

Proof. We proceed by induction on j. Note that Proposition 6.5 implies the case when
7 =1, so we may assume that j > 2. Let

Y € N(@y1 - Yj—1yj+1---Yk—1) O N(@y1 . yj—19j1 - Y1)

be a new vertex. By Lemma 6.2, there exists a Cék)—decomposable k-graph G; =
G,(y,z, ") with |G;| = 2¢ and a tour-trail decomposition G; of G; satisfying

D(G;) = Sj(y.x,2') U Si(o1(y), 2, z) U Sj_1(02(y), 7', 2),

where o1 = j12...(j —1)(j +1)...k and 092 = 2...k1l. Analogously, there is a C’ék)—
decomposable k-graph G’ = G'(y',2',z) with |G| = 2¢ and a tour-trail decomposi-
tion G} of G satisfying

D(G)) = S;(y',a',2) U Sio1(y'), 2,2) U Sja(0a(y'), 2, 7).
Note that
(6.3) |G U G;| =44
and
(6.4)
D(G)uD(G)) = Tilyy' .z, ) Ti(o1(y), o1 (y'). 2,2 ) U Tj-1(02(y), 02(y'), v, 7).
Due to the induction hypothesis, there are C’ék)—decomposable k-graphs

=T (01(Y)701 (y/)vxlax) and Tj—l = Tj—l(O-Q(Y)v 02(y,)7$/7 x)

and a tour-trail decomposition 7;* of T1 U T;_1 such that their union TJ* =Ty uTj
satisfies .
(1) T {z, 2y v {yrs gt vy gl = Jand [T < 2 310k,

(ii/) D(7;*) =T (01 (y)v 01 (y/)’ ', l‘) Y @—1(02(3’)’ 02 (y/)v ', x)
We set T = G v G v T and T; = G; v G; U T*. By (6.3) and (i), we deduce that

Ty < 40+ 237"k < 3¢k.

Moreover (6.4) and (ii’) imply that D(7;) = fj(y,y', x,x') as required. [ |

7. TRANSFORMERS II: TOUR-TRAIL DECOMPOSITIONS

Here, we use the gadgets constructed in the previous section to prove that any C}k)-
divisible k-graph can be augmented to a new, not-too-large, subgraph which has a
tour decomposition. That is the content of the next crucial lemma, whose proof will
be given at the end of this section. Note that we only require degq(v) is divisible by k
for all vertices v € V(G) instead of C{¥)-divisible.

Lemma 7.1. Let 1/n « € « p,1/,1/k with k > 3 and £ > k*> —k + 1. Let H be
a k-graph on n vertices with ) (H) > en. Let G be a k-graph with V(G) < V(H)
and m = |V(G)| < en'* D) sych that deg(v) is divisible by k for all v e V(G).
Then H — G contains a Cék)—decomposable subgraph J such that G U J has a tour
decomposition, J[V(G)] = & and |G U J| < 3kT2k202mk+1. Moreover, if G' has an
edge-bijective homomorphism to G with V(G') < V(H)\V(G), then we have H—G—G’
contains a subgraph J' such that G' o J' is edge-bijective homomorphic to G U J,
JWVGE)N = and V(G J)n V(G vJ])=.

As described before, the lemma will be proven by starting with any tour-trail de-
composition of G, and adding gadgets to it repeatedly. We will first use balancer
gadgets to make sure we have a balanced tour-trail decomposition, and then we will
use swapper gadgets to eliminate any remaining trails one by one.
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7.1. Basic properties. We begin by stating basic properties of any tour-trail decom-
position. Recall that p7 ;(v) is the number of (directed) edges of 7 where v is the ith
vertex.

Proposition 7.2. Let H be a k-graph such that deg(v) is divisible by k for every vertex
veV(H). Let T be a tour-trail decomposition of H. Then, for each ve V(H),

Z ipT,i(v) = 0 mod k.
i€[k—1]

Moreover, if k is even and T is balanced, then py j/2(v) is even for allve V(H).

Proof. Note that only trails in 7 contribute to Zie[k_l] ipT.,i(z). Moreover, for any

tour C, we have deg,(v) = 0 mod k for all v € V(H). Hence by deleting all tours in 7
and their corresponding edges in H, we may assume that 7 consists of trails only.

Fixve V(H). Let T = vy ...v; be atrail in 7 and consider I < [¢] such that v; = v.
Let

¢r(v) = Z (ﬂv:Ui + Lo—vyyy +-- F ]]‘U:Ui+lc—1) :
te[t—k+1]
Observe that every time the trail ‘pass through v’ it increases ¢p(v) by k except if it
is at the beginning or the end of T. More precisely, it is not hard to check that

¢T(U) = k|I N [k7t - k:” + Z (I[’U=Ui + e + 1U=Ui+k_1)
ie[k—1]u[t—k+1,t]

= Z ip; 7(v) mod k.

i€[k—1]
On the other hand, it is easy to see that ¢7(v) = > .y Lyee. Thus, summing over all
trails in T, we get

0=degy(v) = Z or(v) = 2 ip; 7(v) mod k.

TeT ie[k—1]
Furthermore, suppose that k is even and 7 is balanced (see definition in (6.1)). Then
Z ipT,i(v) = Z kpri(v) + (k/2)pT 1/2(v).

i€[k—1] i€[k/2—1]
Since this is equivalent to 0 mod k, we get that pr ;o (v) is even. |
7.2. Balancing. Recall that any k-graph admits a trail decomposition, by orienting

edges arbitrarily. We begin by using balancer gadgets (as given by Corollary 6.3)
repeatedly to obtain a balanced tour-trail decomposition of G.

Lemma 7.3. Let 1/n « ¢ « p,1/0,1/k with k > 3 and £ > k> —k + 1. Let H
be a k-graph on n wertices and 6®)(H) > en. Let G be a k-graph with V(G) <
V(H), m = |V(GQ)| < en™** and such that deg(v) is divisible by k for all v e V(G).
Then H — G contains a C, " -decomposable J such that G U J has a balanced tour-trail
decomposition T*, J[V(G)] = & and |G U J| < m*+1.

Proof. Let Tg be an arbitrary tour-trail decomposition of G. The following claim forms
the basis of our proof and allows us to adjust the values of p 1 /2(v).

Claim 7.4. Suppose k is even. Then H—G contains a C’ék)—divisible subgraph Jy,
with | Jyjo| <k€m/2 and Ji [V (G)] = & such that there exists a tour-trail decomposi-
tion Tyyo of Jyo satisfying, for all ve V(H),
ka/sz/Q(’U) = ]]‘p’]'u’k/Q(’U) is odd MOd 2,
|p77c/2,1(v) - ka/z,k—l(U” = (k/2)]lp7—o’k/2(v) is odd>
PTijni(V) = Py pk—i(v) = 0 if 1 € [2,k —2].
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Proof of claim. Note that 3 cy () P75 k/2(v) = [D(To)| is twice the number of trails
in D(7p). Without loss of generality, let v1,...,v25 € V(H) be the vertices in V(G)
such that pr; r/2(v;) is odd. For each j € [s], we apply Corollary 6.3 and obtain edge-
disjoint balancer gadgets Bk/2(vgj_1,v2j) in H— G. Let Jy/; be the union of these
balancer gadgets. Clearly, |J; /| < skl/2 < kfm/2. Let Ty, be the tour-trail decom-
position of J 5, which is the union of the corresponding tour-trail decompositions of
each Byy(vaj—1,v2;). For all v € V(H), we have pr, , x/2(v) = 1 mod 2 if and only
if v € {v1,...,v95}, which proves the first required property. We can deduce the other
two properties using the properties of the corresponding tour-trail decomposition of
each Bk/g(’UQj_l, vgj). This proves the claim. —

If k is even, then let Jy ), be given by Claim 7.4, otherwise just set Jyp = ¢J. The
next claim allows us to adjust the values of pr; ;(v) for 2 < i < k/2.

Claim 7.5. For each2 <i<k/2, H—-G — Jyj2 contains a Cék)-divisible subgraph J;
such that there exists a tour-trail decomposition T; of J; satisfying, for all v e V(H)
and i’ € [k — 1],

P70 k—it (V) — P75.00 (V) if i e {i, k — i},
P1(0) = P k- (V) = § —i(P7 -1 (V) — PR, (v)) if i€ {1,k —1},
0 otherwise.

Moreover, |J;| < 4il(7), Ji[V(G)] = & and the J;’s are edge-disjoint.

Proof of claim. Let 2 < i < k/2. Suppose that we have already constructed subgraphs
Jo, ..., Ji_1. We now construct J; as follows. Let H' = H — G — Jk/g — Uile[zﬂ-_l] Jy.
For all 7' € [k — 1], note that 3} ¢y () P70, (v) = |D(7T0)| and so

Z (P75,i(v) — D75, 8—i(V)) = 0.

veV (H)
Define a multi-digraph H; on V(H) such that, for all ve V(H),
dy, (v) = max{pr, i(v) — p7s k—i(v),0} and dy (v) = max{prp r—i(v) — p75.(v), 0}

Note that H; can be constructed greedily. Note that |H;| = |D(7p)| is twice the number
of trails in Tg, so |H;| < 2('}}). For each directed edge zy € H;, we apply Corollary 6.3
and obtain edge-disjoint balancer gadgets B;(z,y) in H'. Let J; be the the union of
these balancer gadgets. Clearly, |J;| < 2il|H;| < 4il(). Let 7; be the tour-trail
decomposition of J;, which is the union of the corresponding tour-trail decompositions
of each B;(z,y). It is straightforward to check that 7; has the desired properties, which
proves the claim. —

For each 2 < i < k/2, let J; be given by Claim 7.5. Together with Jj, 5, we have then
edge-disjoint Ja, ..., Jjy for any k. Let H* = H — G — U2<i<[k/2j J; and set T’ =
To9Ua<is<ir/z) Ti- Recall that 3,1 p75,i(v) is the number of (k—1)-tuples in D(7o)
containing v, $0 > iepp_1) P7o,i(v) < 2(7). Forie{2,...,k—2} and v e V(H), we have

(7.1) p7,i(v) = p17 )—i(V),
P77 k/2(v) = 0 mod 2 if k is even, and
. m
(7.3 pra) =praca@l < Y imito) <26- (7).
i€[k—1]

Moreover, p771(v) = pr k—1(v) for all ve V(H)\V(G).
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We now balance py 1 (v) and py —1(v) as follows. Note that [k/2] —1 is the largest
integer which is strictly less than k/2. We have

7.1 .
p71(v) = P77 g1 (v) ) prra(v) = prrg—1(v) + Z i (pr7,i(v) = pr7 ki (v))
2<i<[k/2]-1

-
N

(7.2) Prop. 7.2

= Z ipri(v) = 0 (mod k).

1<i<k—1
For each v € V(G), let
b(v) = (p771(v) — P77 k=1 (V) /F;,
s0 b(v) € Z. Define (greedily) a multi-digraph H; on V(H) such that, for all v e V(H),
dy, (v) = max{b(v),0} and dj; (v) = max{—b(v),0}.

By (7.3), AT (Hy) < 2(7) and |Hy| < m(7}). For each directed edge zy € Hy, we apply

Corollary 6.3 to obtain edge-disjoint balancer gadgets By_1(x,y) in H*. We call J;

the union of these balancer gadgets. Clearly, |J1| < 2(k — 1)¢|Hy| < 2(k — 1)¢m(7).
Let J = U1<i<[k/2j J;. Note that

m m (m m il
\GuJ|<<k>+2(k—1)€m<k>+ Z J4z€<k><2k€m(k><€m .

2<i<|k/2
Let 71 be the tour-trail decomposition of Ji, which is the union of the corresponding

tour-trail decompositions of each Bjy_i(x,y). Note that given a By_i(z,y) and its
tour-trail decomposition 7 = T (z,y), we have, for allve V(H) and 2 < i < k — 2,

p71(v) = pTR—1(v) = —k(Ly=y — Ly=y) and pr;(v) — pri—i(v) =0.

Hence T* = 71 u T is a balanced tour-trail decomposition of J U G, as required. W

7.3. Focusing. The following lemma shows that all the residual D(7*) can be moved
onto a set of fixed k — 1 vertices.

Lemma 7.6. Let 1/n « ¢ « 1/0,1/k with k > 3 and ¢ > k* —k + 1. Let H be
a k-graph on n vertices and 6 (H) = en. Let G be a k-graph with V(G) <€ V(H) and
m = |V(G)| < en'/¥ /2 such that degq(v) is divisible by k for all vertices v € V(G).
Suppose that m is prime and |G| < m/k. Suppose that G has a balanced tour-trail
decomposition T. Let z1,...,z,—1 € V(H)\V(G) be distinct vertices. Then H — G
contains a C’ék)—decomposable J* such that |J*| < 3¥kém, J*[V(G)] = & and G U J*
has a balanced tour-trail decomposition T* satisfying, for alli € [k—1], andv e V(H),
pr*.i(v) = 0 unless v € {z;, z_;} and |D(T*)| < 3m.

We first outline the proof of Lemma 7.6. Take z1,...,2;_1 € V distinct vertices.
Recall the definition of r; at the beginning of Section 6. For 1 < i < |k/2|, define the
functions ¢;, G : VF~1 — V*~1 be such that, for a = ay ---ap_, € VF71,

Gi(a) = rr—i(ri(a, zi), 2k—i) = a1+ Q;_12iQiy1 " Ok—i—12k—iQk—i+1 " Qf—1 and
fz‘(a) = Tk—i(7i(& 2k—i), 2i) = Q1+ Qi12k—iQis1 " QUi 1211 "+ A1
That is, ¢; replaces the ith and (k — i)th vertices with the vertices z; and zx_;, re-
spectively, whereas (; replaces the 7th and (k —4)th vertices with vertices z;_; and z;,
respectively. If k is even and i = k/2, then both (j, and (/o replace the (k/2)th
vertex with 2,5, this is ((a) = ((a) = Ti/2(a 21/2)-

We say that a tour-trail decomposition 77 is an i-convert of T if D(T) can be
partitioned into D; and Dz of equal size such that D(7") = (;(D1) u (;(D2). Note
that the definitions of (;, {; and i-convert depend on a choice of z1, ..., zx_1. However,
such choice will be always clear from the context, so we omit it on the notation.
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Let Tg be a balanced tour-trail decomposition of G. Our aim is to construct tour-
trail decompositions Ti,..., 7|y such that 7; is an i-convert of 7;—;. Notice that
Tik/2) will be the desired tour-trail decomposition.

We will also need the following notation. Let 7 be a tour-trail decomposition
and 1 < i < k/2. Define A;(T) to be the multidigraph on V(H) such that every ordered
tuple vy -+ - vg_1 in D(T) corresponds to a distinct directed edge v;v—; in A;(T).

The following is immediate from our definition of i-convert and A;(7T).

Proposition 7.7. Let k > 3 and 1 < i < k/2. Let V be a set of vertices, and
let z1,...,z,_1 € V be distinct vertices. Let T and T’ be tour-trail decompositions of

two (not necessarily of the same) subgraphs in V. Suppose T’ is an i-convert of T.
Then A;(T") = Aj(T) for all 1 < j < k/2 such that j # i.

The next lemma shows that we can always get a tour-trail decomposition such
that A;(7) is strongly connected for all 1 < i < k/2 and spans V(G). The proof is
simple and follows by greedily adding new arcs to A;(T).

Lemma 7.8. Let 1/n « ¢ « 1/0,1/k with k > 3 and £ > k®> — k + 1. Let H be
a k-graph on n vertices with 6 (H) = en. Let U € V(H) with |U| = m < en and m
is a prime number. Then there exists a C;"-decomposable Jy such that |Jo| = fm,
JolU] = &, Jo has a balanced tour-trail decomposition Ty satisfying V(D(Tp)) < U
and, for all 1 < i < k/2, A;i(To) is a strongly connected multidigraph which spans U
and |A;(To)| = 2m.

Proof. Let uy, ..., u, be an enumeration of U. Consider j € [m]. We apply Lemma 6.1

: A (k) N o i e -
to obtain a copy C; of C,;” with V/(C}) = wji1- - ujpp—1wjk - - wje, where w; jr are
new vertices. For its trail decomposition 7; we consider C; to be a trail

Ujt1 - Ujpp—1WG k- - Wy pUgip1 - Ujpf—1-

Then Uj4+iUj+k—iy Uj+k—iUj+i € Al(lﬁ) forall 1 <17 < k}/2. Let J() = Uje[m] Cj and
To = Ujefm 7j (Without simplification). Note that |Jo| = ¢m as each Cj has { edges.
Note that

|Ai(To)l = D. ATy = D) ID(T;)| = 2m.
jelm] jelm]

Recall that m is prime, so A;(7p) is connected and spans U for all 1 <i < k/2. |
We are now ready to prove Lemma 7.6.

Proof of Lemma 7.6. Apply Lemma 7.8 with U = V(G) and H = H\{z1,...,2k-1},
we obtain a C’ék)—decomposable graph Jop € H — GG such that

(7.4) |Jo| = £m,

and Jy has a balanced tour-trail decomposition 7y such that, for all 1 < i < k/2, A;(7p)
is a connected mutlidigraph which spans V(G).

Let G§ = G u Jy and 7" = T U T, considering all trails, without doing any further
simplification even if it is possible to do so. For all 1 <i < k/2, A; = A;(7"). Thus A;
is a connected mutlidigraph spanning V' (G). Observe that since 75 is balanced, then A;
is Eulerian. Let s be such that |D(7;")| = 2s. Note that

(7.5) 2s = |A;| = |D(T59)| = 2|G| + |Ai(To)| < 2m/k + 2m < 3m.

Claim 7.9. There exist edge-disjoint k-graphs Jo, ..., J|g/2) in H — G such that
(i) each J; is Cék)—decomposable and |J;| <2 - 3kts,
(i) G U Jo U Ujep /i has a balanced tour-trail decomposition T;*, and
(iii) 7;* is an i-convert of T.* ;.
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We first show that the claim implies the lemma. Set J* = Jy u Uje[[k/2j] Jj and
set T* = [z s Clearly, J* is C}k)-decomposable since each J; is. Note that

(7.4).(0)  (75)
T <ol + D) [l < tm+2kes Y 30 < 3%kim.
ie[|k/2]] ie[[k/2]]

Since T* is balanced by (ii), (iii) implies that each v; - - - vp_1 € D(T™) satisfies
U1 vp—1 € {21, 2pm1 ) X {22, 2k—2} X X {21, 21}

Hence, for all i € [k — 1] and v € V(H), pr*;(v) = 0 unless v € {z;, z,_;} as desired.
Also |[D(T*)| = |D(T)| = 2s < 3m by (iii) and (7.5). Therefore to complete the proof,
it remains to prove Claim 7.9.

Proof of claim. Suppose that we have already found Jy,...,J;—1 and we now con-
struct J; as follows.

Case 1: i = k/2. We first prove the case i = k/2 as it is simpler and illustrates some
of the key ideas. If we are in this case, then k is even and, by Proposition 7.2, we

have pr, , , k2(v) =0 (mod 2) for all v € V(H). Also [D(Ty, ;)| = |T¢"| = 2s. Take
an arbitrary enumeration of of D(77€72_1) into by, ..., bas such that by; i 0 = baj /2
for all j € [s], where b; = bj1 -~ bj—1 (here we use the fact that pr , | x/2(v) is even).

For every j € [s], let
bj = baj_1k/2 = bajrs2-
Apply Lemma 6.6 to obtain a swapper gadget Tlg/Q = Ty /2(b2j-1, b2_j1, z/2, 07 ) with a
tour-trail decomposition 77 such that
D(T?) = Tyja(baj—1,b3.", 212, b5) = {by 1, b5, Coja(boj—1), Gya(b2))}-

We may further assume that these 77 are edge-disjoint.
Let Jj /2 be the union of these swapper gadgets and 7}/ be the union of their tour-

trail decompositions, together with 7 ,_;. Note that |Jk/2| < 3%/2¢ks, and since
D(T,) = D(Tiia 1) © [ {b3) 1,03} Geja(baj1), Guja (D)}
Jels]
= {b]7b;17€k/2(bj) j € [28]} = {Ck/Z(b]) .7 € [25]})
we deduce Ty, is a (k/2)-convert of Ty o1, as required.
Case 2: i < k/2. By (iii) and Proposition 7.7, we deduce that A;(7;—1) = A; and so, it is
an Eulerian multidigraph. Hence, there exists an enumeration of D(7;) as by, ..., bag,
which corresponds to an Eulerian tour in A;. Let bj = bj1---b;j,—1, so we have b; ;,_; =
bjt1, for all j € [2s].
We now replace the (k — ¢)th vertex in each byj_1 with 2; and the ith vertex in
each by; with z;, as follows. For every j € [s] let
bj = baj—1k—i = baj-
Apply Lemma 6.6 to obtain a swapper gadget 77 = T;(baj, bQ_jlfl, Zi b;‘, ) with a tour-
trail 77 such that
D(T?) = ﬁ(b2j,b§j1_172i,b;) = {by," 1, by} mr_i(baj 1, 20), i(baj, i) }.

Recall that r;(bgj, 2;) and r,_;(bg;_1, z;) correspond to the tuples by; and bg;_; re-
placing b;‘ with z; (see definition at the beginning of Section 6). Note that

D(T; v U T7) = U {sz—l,b2j,bgjl,l,bg_jl,kai(sz—hZi),m'(b2j7zi)}
Jjels] Jje[2s]
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= U {reilbzj1, 2), ri(bay, 22)}.
Jels]
Equivalently, D(T; U Ujepas) T7) is obtained from D(T;) by corresponds to replacing
the (k —4)th vertex in by;_; and ith vertex in bg; with z;.

By considering the pairs of tuples r;(bgj, 2;), 7k—i(b2j+1, 2;), a similar argument
implies that we can replace the ith vertex in ry_;(bgjt1,2) and (k — i)th vertex
in ?”i(sz, Zi) with z,_;.

Let J; be the union of these swapper gadgets and 7; be the union of 7;_; and the

corresponding tour-trail decomposition. Notice that T; is an i-convert of 7;_1 and
that |J;| < 370k - 2s. This finishes the proof of Claim 7.9. -

As discussed, this finishes the proof of the lemma. |

7.4. Untangle the last arcs. Observe that Lemma 7.6 in the previous subsection
we found a trail-tour decomposition in which all arcs lie in a small set of k£ — 1 ver-
tices z1,...,2r_1. Here we show how to ‘untangle’ those arcs in such a way that all
‘cancel’ each other. After this cancelling, the trails from the tour-trail decomposition
are removed and we obtain a tour decomposition.

Lemma 7.10. Let 1/n « e < 1/0,1/k with k > 3 and ¢ > k* —k + 1. Let H be
a k-graph on n vertices with §©)(H) = en. Let G be a k-graph with V(G) < V(H)
and |V(G)| < en. Let z1,...,25_1 € V(G) be distinct vertices. Suppose that G has a
balanced tour-trail decomposition Ty such that |D(T1)| < dbm and, for all i € [k — 1]
and v € V(H), pr;.i(v) = 0 unless v € {z,2t_;}. Then H — G contains a C{F-
decomposable subgraph J such that |J| < k3¢|D(T1)|, J[V(G)] = &, and G U J has a

tour decomposition.

Proof. We simplify 771 as much as possible. Let |D(77)| = 2s. Since 7; is balanced, we
have, for all i € [k — 1],

s ifi#k/2,

7.6 i(zi) = i(Zh—i) = .
(76) prial) = (i) {25 .

We now colour b € D(77) red if b starts at z; (i.e. the first vertex of b is z7),
and blue otherwise. So there are s red (k — 1)-tuples and s blue (k — 1)-tuples
in D(71). Ideally, we would like to transform all red (k—1)-tuples to 21 - - - 21 and all
blue (k—1)-tuples to zx_1 - - - z1 (so that they would cancel out). A (k—1)-tuple is i-bad
if z; is at the “wrong place”. More precisely, an i-bad red (k — 1)-tuple (and an i-
bad blue (k — 1)-tuple) will be of form vy -+ v;_12—Vit1 " Vk—i—12iVk—i41 " " Vk—1
(and 1 Vi—12Vig1 - Vh—i—12k—iVk—i+1 - - Uk—1, Tespectively), where {v;,vp_;} =
{2j,2p—;} for all j € [k — 1]\{i}. Note that no (k — 1)-tuple is 1-bad, (k — 1)-bad
or k/2-bad. If a (k —1)-tuple is i-bad, then it is also (k —1i)-bad. By (7.6), the number
of red i-bad paths equals to the number of blue i-bad paths.
We claim that there exist edge-disjoint k-graphs Jo, ..., Jjp/21—1 in G — H such that,
for 2 <i < k/2,
(i) each J; is C{F)-decomposable and |J;| < 8ifks,
(i) G U Ujepa,1 /5 has a balanced tour-trail decomposition T;,
(ili) for all j € [k — 1] and v e V(H), pr; j(v) = 0 unless v € {2z}, 25—},
(i) [D(T)| = |D(T: 1), and
(v) D(T;) contains no j-bad (k — 1)-tuple for all j € [i].
Suppose that, for some 2 < i < k/2 — 1, we have constructed Jo,...,Ji_;. We
describe the construction of J; as follows.
Let aj,...,a; be the i-bad red (k — 1)-tuples in D(7;—1) and by, ..., b; be the i-bad
blue (k — 1)-tuples in D(T;_1). Consider any j € [t]. Let

a5 = Q51 Qgi—1Rk—iQgi4+1 """ O k—i—12i0j k—i+1 """ Qjk—1



CYCLE DECOMPOSITIONS IN k-UNIFORM HYPERGRAPHS 23

bj =bj1 - bji-12ibjit1 - 0jk—i—12k—ibjk—it1 - bjr—1-

We now mimic the argument in the proof of Lemma 7.6 to swap z; and z;_; in a;’s
and b;’s. However, we are unable to construct swapper gadgets T;(a;, bj_l, Ziy Zk—i) @S
both a; and b; contain both z; and z;_;. To overcome this problem, we first replace z;
with a new vertex w (so a; and b; are now free of z;). After this is done, then we can
replace zp_; with z;, and finally we replace w with z;_;. We now formalise the proof
as follows.

Let w e V(H)\{zy : i € [k — 1]} be a new vertex. Apply Lemma 6.6 to obtain three

edge-disjoint swapper gadgets

T’i(aj?b;lawazk‘—i)a E(Ti(ajvw)_17rk—i(bjaw),Ziazk‘—i) and
E(Tk—i(aja Zk?—i)u T’i(ij Zk—i)717 Zis U})

Let 77 be its union and 77 be the union of their tour-trail decompositions. It is not
hard to check that after cancellation we obtain

Note that (;(a;) and ¢;(b;) are not i-bad.
Let J; = Uje[t] T9 an let T; = Ti—q1 U Uje[t] 77 be the corresponding tour-trail
decomposition of G U |y j<i Jj. This finishes the construction of J;.

Now we have constructed J; for all 2 < i < k/2. We set J = {Uye;cp/o Ji, 50 |[J] <

2k30s = k3¢|D(T7)|. Note that Tik/21—1 is a balanced tour-trail decomposition of G U J
without any bad (k — 1)-tuple. Therefore, after cancellation, D(7jj/2—1) is empty,
implying that 7 /911 is a tour decomposition. |

7.5. Proof of Lemma 7.1. We now put the pieces together to prove Lemma 7.1.

Proof of Lemma 7.1. Apply Lemma 7.3 to obtain a Cék)—decomposable Jiin H-G
such that |G U Ji| < ¢m**! and G U J has a balanced tour-trail decomposition 77.

Let m; be a prime between k¢mF*! and 2k¢m**+1 (this exists by Bertrand’s postu-
late). Add isolated vertices to G U Ji to obtain a subgraph G of H such that

‘V(Gl)‘ = my and ’Gﬂ < ml/k.

Let z1,...,2,-1 € V(H)\V(G1). Apply Lemma 7.6 (with G1,7; playing the roles
of G,T ) to obtain a C}k)—decomposable Jo in H — G1 such that

| 2| < 3%ktmy

and Gy = G1UJs has a balanced tour-trail decomposition 75 satisfying, for all i € [k—1]
and v e V(H), pri(v) = 0 unless v € {z;, zp—;} and |D(73)| < 3m;.

Apply Lemma 7.10 (with G, 72 playing the roles of G,7T;) to acquire a C}k)-
decomposable subgraph J3 in H — G5 such that

|J5| < K3¢|D(T3)| < 3k*tmy

and G9 U J3 has a tour decomposition. We set J = J; U Jo U J3 and so G u J has a
tour decomposition and

|G U J| < my + 3ktmy + 3k30my < 3FT2EA2mPTL

The ‘moreover’ statement can be obtained by constructing a homomorphic copy of J

inH-G-J. |
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8. TRANSFORMERS III: PROOF OF LEMMA 4.3

Finally, in this section we use the machinery of transformers and tour-trail decom-
positions to find cycle absorbers and prove Lemma 4.3.

Proof of Lemma 4.3. Let W < V(H) be of size at m < mg. By Lemma 6.1, for
any two ordered (k — 1)-tuples vy ---vr and vp_gy1---ve in V(H)\W, H\W con-
tains a tight walk vy ---vp on £ vertices and no repeated vertices outside of vy - - - v
and vy_g41---ve. In particular, there is an f-cycle in H\W covering any arbitrary
k-tuple vy,...,vx in H\W. Hence, by Lemma 3.3, it suffices to show that H is

(Cék),mo,mg,n)—transforming for some increasing function n# : N — N which satis-

fies n(x) = x. Indeed, this will imply that H is (Cék), mg, mo,n’)-absorbable for some
increasing function 1’ : N — N such that n/(x) > z, as desired.

Define n : N — N by n(x) = 3¥73k>¢32%+1. We will show that H is (Cék), mo, Mo, 1)-
transforming. To do so, let G; and G35 be two vertex-disjoint C’}k’)—divisible k-graphs
with V(G1),V(G2) < V(H); suppose that |V(Gi)l|,|V(G2)| < mp and that there
is an edge-bijective homomorphism from G; to Ga. Let W < V(H)\V(G1 v G2)
with [W| < mg. Let m = max{|V(G1)|,|V(G2)|}. Let H = H\W. It is enough to
show that H' contains a (G, Ga; C’ék))—transformer of order at most n(m). This will
be our task from now on.

Apply Lemma 7.1 to obtain vertex-disjoint subgraphs J; and Jo of H — G1 — G»
such that

(a1) G1 u J1 and G2 U Jy have tour decompositions,

(ag) Jyp and Jy are C}k)-decomposable,
(az) J1[V(G1 v G2)] and Jo[V(G1 L Ga)] are empty,
(ag) |G1 U Ji|,|Ga U Jo| < 3KF2EA2mF+L | and

)

(a5) there is an edge-bijective homomorphism ¢ from G U J; to Ga U Jo.

Let G = Gj u J; for j € [2]. We now claim that there exists a (G, ’Q;C’ék))—
transformer 7% with |T;| = (¢ — 1)|G}|. Indeed, let {4; : i € [s]} be a tour decom-
position of G, and recall that ¢ is an edge-bijective homomorphism from G} to GY.
Therefore, {¢(A4;) : i € [s]} is a tour decomposition of G5. Now, suppose that for
some i € [s], we have already constructed edge-disjoint T4, ...,T;—1 in H — G| — G},
such that, for i’ € [i — 1]

(b1) Ty is an (Ay, ¢(Ay); Cék))—transformer,

(b2) |Ty| = (£ —1)|Ay|, and

(bs) Tu[V(G})] O To[V(Gh)] = &.

We construct T; as follows. Let H* = H' — G| — G, — Ui,e[i_l] Ty. Let A; = vy ---vy.
Let w; = ¢(v;) for all j € [t], so ¢(A4;) = wy - - - wy. Note that {—k*+k—1 > k*—k by the
choice of £. Therefore, by Lemma 6.1, H* contains tight paths Pi,..., Ps,Q1,...,Qs
such that, for each j € [t],

(Cl) f)] isa tight path of length kQ—k‘ from Vj+1V542 " Vjtk—1 to WjWj41 " Wjtk—2,

(c2) Q; is a tight path of length £ — k? + k — 1 starting from wjwj41 - - wj1—2 and

ending in v;vjy1 - Vj1k—2, and

(c3) V(P)\V(D(F;)) and V(Q;)\V(D(Q;)) are new vertices.

Each of vjvji1 - vjpp—1 U Pj U Q) and wjwjq1 -+ wjpp—1 U P U Qj41 forms a C’ék).
Hence, we are done by letting T; = | J jiels] P; U @Q;. This finishes the construction of 7T;.
Thus T* = {5 Ti is the desired (GY, G5; C{*))-transformer.

We finish by defining T' = J; u Jo U T™, so

\V(T)| < k|T| < k(£ + 1)|G’1|(a£)3k+3k5€3mk“ = n(m).

Together with (as) and (ag), we deduce that T[V(G1)] is empty and
GiuT=((GiuJ)uT*uJs=(GLuT*) U Jy
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is C’}k)—decom osable, and similarly Go U T is Cék)—decomposable. Therefore, T is
a (G1,Ga; Cék )-transformer. [ |

9. COVER-DOWN LEMMA

In this section we prove Lemma 4.2 which is the main step in the iterative part
of iterative absorption. We prove this lemma by induction on k, and when dealing
with k-uniform hypergraphs we will require results on path decompositions for k£ — 1.
To organise our arguments, we define the following two statements for each k > 3. The
first statement corresponds precisely to the Cover-down lemma for k-graphs, while the
second one concerns decompositions of k-graphs into paths.

(©k) For every a > 0, there is an ¢y € N such that for every p > 0 and every n,f/ € N
with ¢ > ¢y and 1/n < p,a the following holds. Let H be a k-graph on n
vertices and U < V(H) with |U| = |an| such that

(CDy) 6@ (H) = 2an,
(CDy) 6@ (H,U) = a|U| and
(CDs3) degy(x) is divisible by k for each x € V(H)\U.

Then H contains a Cék)—decomposable subgraph F' € H such that H — H[U] <
F and Ay_1(F[U]) < pn.

(—k) For every £ = k and for every o > 0 there is an ng such that the following holds.
Every k-graph H on n > ng vertices with 6)(H) > an and |H| = 0 mod ¢
)

contains a Pe( -decomposition.

Thus, Lemma 4.2 can be synthetically stated as follows.
Lemma 4.2 (Cover-down lemma (reprise)). (©) holds for every k = 3.

We show Lemma 4.2 through an induction on k, in which (—) is helpful to enable
the induction step.

Lemma 9.1. For each k > 3, if (—_1) holds, then (©) holds.
Lemma 9.2. For each k > 3, if (©) holds, then (—y) holds.

Assuming the validity of these two last lemmas, Lemma 4.2 follows easily, if we are
provided with a base case. For this, we use the following result by Botler, Mota, Oshiro
and Wakabayashi [1] on path decomposition in graphs, which immediately yields (—2).

Theorem 9.3 ([1]). For each ¢ > 1, there exists ky such that each ky-edge-connected
graph whose number of edges is divisible by ¢ has a PEQ -decomposition.

The proof of Lemma 9.2 is given in the next subsection. The proof of Lemma 9.1
will require more effort and is given in Subsection 9.4, after some previous necessary
results.

9.1. Path decompositions: proof of Lemma 9.2 and Theorem 1.4. To see that
the bound dp(*) > 1 /2 holds, consider the following example. Take the union of K 1(7132 |
and K [(S}z] on vertex sets A and B, respectively. Delete a few edges if necessary so
that resulting k-graph H satisfies |H| = 0 mod ¢ but |H[A]| # 0mod ¢. Then H
is not P{®-decomposable and §(H) > (1/2 — o(1))n. On the other hand, note that
Lemma 9.2 and Lemma 9 imply Theorem 1.4.

The proof of Lemma 9.2 follows essentially the same strategy we use to prove The-
orem 1.3 in Section 4. The Vortex lemma is the same and for the Cover-down lemma
we may use (@), which is assumed to hold as a hypothesis. To see this, it is enough to
notice that for every sufficiently large ¢’ divisible by ¢, a Cé,k)—decomposable subgraph
is Pé(k)—decomposable as well. Hence, the only new ingredient needed is the following
Absorber lemma, for paths.
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Lemma 9.4 (Absorber lemma for paths). Let 1/n « ¢ < 1/¢,1/k,1/mg with k > 3.
Let H be a k-graph on n vertices with 6 (H) > en. Then H is (Pé(k),mo,mo,n’)—
absorbing for some increasing functionn’ : N — N satisfying n/ (x) = x and independent
of € and n.

Proof. Pick an arbitrary edge e € Pe(k) and let a be any k-tuple in V(H). Since the

inequality 62 (H) > en holds, it is easy to see for every W < V(H)\{v1,..., v} of
size at most mq there is a copy of P{*) in (H U {a})\W in which a plays the réle of e.
We do this by simply extending a path (maybe in both directions) starting with a,
which we can do simply because of §(H) > §®)(H) > en. This enables us to use
Lemma 3.3, and hence, it is enough to prove that H is (Pg(k), mo, Mo, N)-transforming
for some increasing function 7: N — N.

Let 4y be the smallest number larger than k> — k which is divisible by ¢ and de-
fine n(z) = foz?. Let G,G’ < H be vertex-disjoint P( )_divisible subgraphs such
that there is an edge-bijective homomorphism ¢ from G to G'. Also, let W <

V(H)\V(G 0 ) and suppose [V(G)],|V(G")] < mo and [W] < mo — n(V(G))).
For every edge e € G apply Lemma 6.1 to find a path P, € H\W between e and ?g
with precisely ¢p + 1 edges. Since ¢y is divisible by ¢, T = | J o Pe is a (G,G"; P,
transformer of size at most {pe(G) < n(max{|V(G)], |V(G’)|})

We omit further details of proof of Lemma 9.2 and reference the reader to the proof
of Theorem 1.3.

9.2. Well-behaved approximate cycle decompositions. Given a k-graph H such
that 6 (H) > an, we find a Cék -packing C that covers almost all edges of H and
such that the leftover is not too concentrated in a (k — 1)-tuple. Here, a C}k -packing
is a set of edge-disjoint copies of Cék) More precisely, we have the following lemma.

Lemma 9.5 (Well-behaved cycle decompositions). Given k € N and o = 0 there is
an £y € N such that for every v > 0 and ¢,n € N with £ = £y and 1/n < v, «a,1/¢ the
following holds. Let H be a k-graph on n vertices with 5(2)(H) > an. Then H has
a C’}k) -packing C such that Ap_1(H —|JC) < yn.

The case k = 3 is proven by the last two authors in [14] and here we follow the same
lines. Given a k-graph H and an edge e € H, recall that Co(H) and C;(H,e) are the
family of all £-cycles in H and those containing e. The proof of Lemma 9.5 rests in a
result by Joos and Kiihn [11] about fractional Cj-decompositions.

Theorem 9.6 (Joos and Kiihn [11]). Given k € N and a, jp = 0 there is an {y € N such

that for every £,n € N with £ = {y and 1/n < «, 1/ the following holds. Let H be a k-
(k

graph on n vertices with 5(2)([{) = an. Then there is a fractional C,
of H with

)—decomposition w

2|H|

Q‘H’ 7 < W(C) < (1 +M)m

(1= )Ak 1(H)

for all cycles C € Cy(H).

Additionally, we need the following nibble-type matching theorem. The statement of
the theorem is technical, but in our context the conditions are easy to check. Consider
the following parameter g(H) = A1(H)/Ay(H) for every k-graph H.

Theorem 9.7 (Alon and Yuster [1]). For every v > 0, there is a & > 0 such that
for every sufficiently large n the following holds. Let H be a k-graph on n vertices
and let Uy,...,U; € V(H) be subsets of vertices with logt < g(H)Y®*=3) and such
that |U;| = 5g(H)YGk=3) 1og(g(H)t) for every i € [t]. Suppose that

(a) 01(H) = (1 = §A1(H) and

(b) Ai(H) = (logn)"Aq(H) .

Then H contains a matching such that at most v|U;| vertices are uncovered in each U;.
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Lemma 9.5 follows by an straightforward application of Theorems 9.6 and 9.7.

Proof of Lemma 9.5. Given k € N and o > 0 fix any p,& < 1/3 and take ¢y given by
Theorem 9.6. Let ¢ = £y, v > 0 and let n be sufficiently large for an application of
Theorems 9.6 and 9.7.

First, we apply Theorem 9.6 to obtain a fractional Cék)—decomposition w of H sat-
isfying
2|H| 3nk 3

(9-1) w(C) < U+ W5 < 5@ () S atnl F

for all cycles C € Cy(H).

Then, consider the auxiliary ¢-graph F' with vertex set E(H) and an edge in F for
each cycle in Cy(H) corresponding to its set of £ edges in H. Define a random subgraph
F' € F by keeping each edge C with probability pc = n'/2w(C) < 1 by (9.1).

For every edge e € H we have E[ds(e)] = n'/? 2cec, (e w(C) = n'/2. Moreover,
since two distinct edges e, f € E(H) can participate together in at most O(nf=(k+1))
many Cék) in H, (9.1) implies that the expected 2-degree is bounded by E[dp (e, f)] =
O(n_l/ 2). Using standard concentration inequalities we get that with high probability
dp/(e) = (1 + o(1))n'/? for each e € V(F') and that Ay(F’') = O(logn). This means
that

SL(F") = (1= o(1)Ai(F), g(F') = Q(n'/?/logn) and g(F') = O(n'/?).

For each (k — 1)-set S of vertices of H, let Us < V(F') correspond to the edges
in H containing S. There are at most n*~! such sets and each has size at least en.
Thus, it is easy to check that the conditions for Theorem 9.7 are satisfied. Therefore,
there is a matching M in F” such that at most yn vertices in V(F”) are uncovered in
each Ug. The matching M in F’ € F translates to a C}k)-packing C in H and the
latter condition implies Ag_;(H — [ JC) < vn, as desired. [ |

9.3. Extending lemma. For this section we will use the following result (see [14,
Theorem 5.5]).

Theorem 9.8. Let Xi,...,X; be Bernoulli random wvariables (not necessarily inde-
pendent) such that, for each i € [t], we have P[X; = 1|X1,...,X;—1] < p;. Let
Yi,...,Y; be independent Bernoulli random variables such that P[Y; = 1] = p; for
all i € [t]. Let X = 3leqXi and Y = 3,10 Y. Then P[X > k] < P[Y > k] for all
ke{0,1,...,t}.

Let & be a multiset of ordered (k — 1)-tuples in an n-vertex set V', possibly with
repetitions. We say that S is y-sparse if the multi-(k — 1)-graph S formed by all the
unoriented (k — 1)-sets from S, counting repetitions, has A;(S) < yn*~J for each 0 <
j < k — 1. For instance, the j = 1 case says that no vertex is in more than yn*~!
tuples (counting repetitions). Recall the definition of ends of a trail P and D(P) in
Section 6.1.

Lemma 9.9 (Extending lemma). Let 1/n « v « p < &,1/¢,1/k. Let H be a k-graph
on n vertices. Let S = {a;,b; : i € [t]} be a multiset of ordered (k — 1)-tuples in V(H)
such that

(a) S is y-sparse and

(b) for each i € [t], there are at least en® trails P in H on £ + 2(k — 1) vertices

such that D(P) = {a;, b;}.

Then, there exist edge-disjoint trails Py, ..., P, in H such that, for each i € [t],

(i) P; has ¢+ 2(k — 1) vertices and D(P;) = {a;, b;},

(ii) the vertices of P; outside a; and b; are all distinct and

(i) Ag—1(Uiery Po) < pn-
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Proof. The idea is to pick, sequentially, a trail P; chosen uniformly at random among
all the trails whose ends are a; and b;. Since S is «y-sparse and there are plenty of
choices for P; in each step, we expect that in each step the random choices do not affect
the codegree of the graph formed by the yet unused edges in H by much. This will
ensure that, even after removing the edges used by Py,..., P;_1, there are still many
trails P; available for the ith step. If all goes well, then we can continue the process
until the end, thus finding the required trails.

We say that a trail P is i-good if P is on £ + 2(k — 1) vertices, D(P) = {a;, b;}
and the vertices of P outside a; and b; are all distinct. Let P;(H) be the set of
all i-good trails in H. We begin by noting that P;(H) is large. Indeed, there are at
most £2n~! < en’/2 trails P on £ + 2(k — 1) vertices with D(P) = {a;, b;} that is
not i-good. By (b), |P;(H)| = en’/2. Since u « &, we have

. . . 4
. —1 ~x ) i - = .
(9.2) if G is a k-graph with Ag_1(G) < un, then |P;(H — G)| = en"/3

We now describe the random process. For each i € [t], assume we have already
chosen edge-disjoint Py, Ps, ..., P,_1 € H, and we describe the choice of P;. Let G;_1 =
Uje[ifl] P; correspond to the edges of H used by the previous choices of P;, which we
need to avoid when choosing P; (note that Gg is empty). If Ax_1(G;—1) < un, then
(9.2) implies that |P;(H — G;_1)| = en’/3 and we take P; € P;(H — G;_1) uniformly
at random. Otherwise, if Ag_1(G;—1) > pn, then let P, = (.

In any case, the process outputs a collection of edge-disjoint subgraphs Py, ..., P;.
Our task now is to show that with positive probability, there is a choice of Py,..., P;
such that Ap_1(G¢) < pn. This will imply also that P; € P;, which is what we needed.
Formally, for each i € [t], let S; be the event that Ag_1(G;) < un. Thus it is enough
to show P[S¢] > 0.

Fix e € (‘z(ﬁ)) For each i € [t], let X;(e) be the random variable that takes the
value 1 precisely if e belongs to an edge of P;, and 0 otherwise. Equivalently, X;(e) = 1
if and only if degp (e) > 1. Since Ay_;(P;) < 2 for each i € [t], we have

(9.3) degg,(e) < 2 Z Xi(e).
Jeli]

For each i € [t], define

Ck
ri(e) = max{|le n a;|,|e nb;|} and p}(e) = min 1,67_ ,
: en(k=1)=ri(e)

where here a;, b; are taken as the underlying (k — 1)-sets.

Claim 9.10. For cache € (V™) andi € [t], P[X;(e) = 1|X1(e), Xa(e), ..., Xi—1(e)] <
p; (e).

Proof of the claim. Fix e € (‘2(_1?) and ¢ € [t]. Using conditional probabilities, we
separate our analysis depending on whether §;_1 holds or not. If §;_; fails, then P; =
& and so X;(e) = 0 implying that our claim holds.

Now assume that S;—1 holds, so Ag_1(Gi—1) < pn. By (9.2), P; will be chosen
uniformly at random from P;(H — G;_1), which has size at least en’/3 irregardless of
the values of Xi(e),..., X;—1(e).

If ri(e) = k — 1, then pf(e) = 1 and we are done. We may assume that r = r;(e) €
[k —2] U {0}. We now estimate the number of P € P;(H — G;_1) with degp(e) = 1. If
we have P = v1vg - - vy49(4,—1) and deg P(e) > 1, then jo = min{j : vj € e} € [{ + &k —1]
and |{j € [k] : vjo4+; ¢ e}| = 1. Recall that, for each P € P;(H — G;_1), it holds
that |V (P)\{a;,b;}| = ¢ and it also holds that |e\a;|,|e\b;| = k — 1 — r;(e). Hence,
we deduce that the number of P € P;(H — G;_1) with degp(e) > 1 is certainly at
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most (£ + k — 1)knt=(F=1=7:(e)) < 2¢kpnt~(k=1-7i(€))  Thus we have

2kn' ") ek, ©
Pi(H —Gi1)| ~ enk1orle ~ P

as required. This finishes the proof of the claim. -

P[Xz(e) = 1’X1(€), PN ,Xi_l(e),Si_l] <

Now, we use that S is y-sparse to argue that Zie[ﬂ pi(e) is small for each e € (‘gﬁ))

Indeed, for each 0 < r < k — 1, let ¢, be the number of ¢ € [¢] such that r;(e) = t.
Since S is y-sparse, we have t, < 2(k;1)'ynk*’” for each 0 < r < k — 1. Recall that we
are assuming the hierarchy v « p « e,1/¢,1/k. Therefore, we have

1
(9.4) Z pf( =tp_1 + Z gnk T %n
] o<r<k—-2

We now claim that

(9.5) Z Xi( gn < exp <—§n> :

Indeed, (9.4) implies that 7 Zie[t] pi(e) < un/3, so the bound follows from Theorem 9.8
combined with a Chernoff-type bound [10, Corollary 2.4].

For each e € (V(zH)), let X, := Zie[t] Xi(e). Let £ be the event that max, X, < un/3.
By using a union bound over all the (at most n*~1) possible choices of e and using
(9.5), we deduce that £ holds with probability at least 1 — o(1).

Now we can show that S; holds with positive probability. In fact, we shall prove
that P[S;|€] = 1, which then will imply P[S;] = P[S|E]P[E] = 1 — o(1). So assume &
holds, that is, max. X. < wun/3. Note that Sy holds deterministically, and suppose
that i € [t] is the minimum such that S; fails to hold. Since S;—; holds, using (9.3) we
deduce

Ar-1(Gi) €2+ Ap_1(Gi—1) = 2 + maxdegg,  (e) <2 |1+ max Z

Jjeli—1]
<2 (1 +maXXe) <2 (1 + %n) < pn,
(&
where in the penultimate inequality we used £, and in the last inequality we used
1/n « p. Thus S; holds, a contradiction. |

The following corollary of Lemma 9.9 allows us to find a sparse path-decomposable
subgraph whose removal adjusts the degrees modulo k. This was used in proving
Corollary 2.4.

Corollary 9.11. Let 0 < 1/n « p « 1/0,1/k,e with £ > k > 3. Let H be a k-
graph on n vertices such that ) (H) = en. Then there exists a Pg(k)
subgraph H' such that
(i) |H'| < £2kn,
(ii) Ag—1(H') < pn and
(iii) for each x € V(H), we have degy_ g (x) = 0 mod k.

-decomposable

Proof. We start by finding a multidigraph D on V = V(H) such that d},(v) —dp(v) +
degy(v) = 0 mod k holds for each v € V. This can be constructed greedily, starting
from an empty digraph D. As long as there is a pair of vertices u,v and 0 <i < j < k
with d},(u) — dp(u) + degy(u) =i mod k and df,(v) — dp(v) + degy (v) = j mod k, we
pick them by minimising ¢ and maximising j, and then we add the directed edge u — v
to D. Since > .y degy(x) = k[H| = 0 mod k, this process is guaranteed to end.

By construction, we have d},(v),dp(v) < k for each v € V, and D has at most kn arcs.



30 A. LO, S. PIGA, AND N. SANHUEZA-MATAMALA

Let £y be the minimum integer divisible by £ such that ¢y > k* — k 4+ 2. We clearly
have the inequality £y < (2. Given vertices u,v € V, suppose that T = T, S H is
a Pek)—decomposable subgraph on ¢y edges such that degp(u) = k — 1, degp(v) = 1
and degy(w) = 0 mod k for all other vertices. Suppose we can find an edge-disjoint
collection T of such subgraphs T, ,, one for each edge v — v in D, with the additional
condition that the union H’ of those subgraphs has codegree at most un. Then H’
is easily seen to satisfy the required conditions. We now describe the construction of
such a family.

Each T,,, will be chosen as follows. Given uv € E(D), we pick a (k — 2)-tuple of
vertices x(u, v) = x9 - - x_1 € (V\{u, v})*~2, uniformly at random. Then, we consider
the (k — 1)-tuples v, , = uxp_1 -2 and Wy, = x2---x_1v. Note that a trail with
ends v, , and w,, using ¢y edges and no new repeating vertices forms a 7, , with the
required characteristics. In particular, T3, has a Pg(k)—decomposition.

Consider the multiset of ordered (k — 1)-tuples Q = {J,ep(p){Vuw, Wup}. Since
the bounds A™(D),A™(D) < k hold and x(u,v) was chosen at random for each di-
rected edge uv € E(D), we can assume that Q is y-sparse. Select a new constant p
which satisfies the hierarchy © « p « . By Lemma 6.1, for each uv € E(D), there
exist pneo*’”l trails with ¢y edges and ends v, ,, and wy,,. Then, Lemma 9.9 (with p
in place of €) provides us with an edge-disjoint collection of trails {T,, : uv € E(D)},
one for each uv € E(D), such that T, has ends v,, and w,,, no repeated vertices
save for those in the ends, and H' = queE(D) Py, satisfies Ag_1(H') < pn, which is
all we needed. |

9.4. Cover-down lemma: Proof of Lemma 9.1. For this section, we will require
a few pieces of new notation. Given a k-graph H, a vertex set U < V(H), a (k — 1)-
tuple e € (‘2(_}?), and a set of (k—1)-tuples G < (‘2(_}?), define Ny (e,U;G) = N(e,U)n
G. Moreover, define

H
0®(H;U,G) = min {NH(elaU3 G) 0 Nilez, Ui G erez € (Z(— 1)>} '

Proof of Lemma 9.1. Given k € N and o« > 0 take ¢y € N larger than the one given
by (—k—_1) and sufficiently large for an application of Lemma 9.5. Moreover, for u > 0
we take auxiliary variables v, p; and p; for every i € [k — 1], under the following
hierarchy

0<y K1 €KPp1 K K g1 K Pr_1 L g L iy Q.

Finally take 7; = v + 2p; < fi41 and o = p;a?/2 — Zosjgifl p; > pi. Let n € N be
sufficiently large and let H be as in the statement of the lemma.

Step 1: Setting the stages. For every 0 < i < k—1,let H; = {ee€ H: |en U| = i}
and let R; < H; be defined by choosing edges independently at random from H;
with probability p;. Moreover, let Rs; = UKjgkf1 R;. Considering (CD3), by stan-
dard concentration inequalities we have that with non-zero probability the following
inequalities happen simultaneously: for every 0 <i < k — 1,

(9.6) Ak_1(Ri) < 2pin

pia|U] - pia’n

2 =~ 27
where G; = {e € (kzl) : lenU| = i} (we include the degenerate cases G_1 =Go= (le))
From now on for every 0 < i < k — 1 we consider R; to be a fixed graph with those
properties.

Define H* = H — H[U] — R=¢ and observe that 6(?)(H*) > an/2. Hence we can
apply Lemma 9.5 to find a C’ék)—packing C such that Ag_1(H* — [ JC) < yn. We shall
find a Cék)—packing that covers the leftover J = H* — | JC and the graph R>,. We

(9.7) 02 (Roi 0 HUL U, Gy1) =
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do this in stages, covering the edges J; = (J n H;) u R; (and some from R>;) in each
stage.

Step 2: The first k — 1 stages. To start, let C_; = J_1 = J. Let 0 <i <k — 2
and denote the edges which were covered in previous stages by Jg;—1 = Uogjgz‘_l Jj.
Suppose there is a C’ék)—packing C;_1 such that

9.8)
UCiflﬁH[U]=@, JSiflgUCifla and Ak—l(UCiq—Jsiﬂ)éZ HgM.

0<j<i

Note that (9.8) holds vacuously for i = 0. We shall prove the existence of a packing C;
satisfying (9.8) for 7 instead of i — 1.

Consider Rsij1; = Rsii1 — (JCi—1 and Ji = J; — (JCi—1 the remaining edges
from Rs;y1 and J; after deleting | JC;—1. Because of (9.7) and (9.8) we have that

2
bi+1¢x

(9.9) 6(3)(R>i+1;U7 Gi) = ( B

— 2 ,uj)n = OGr1M > i1 .
0<j<i+1

Moreover, in view of (9.6), we obtain

(9.10) Ap_1(J;) < Ap—1(J) + Ap_1(R;) < yn + 2p;an = yn.

Enumerate edges of J; into ey,...,e;. For each j € [t], we oriented e; arbitrarily
and let {a;,b;} be such that D(e;) = {aj_l,bj_l}. Note that S = {a;,b; : j € [t]}
is 7;-sparse. Moreover, (9.9) and Lemma 6.1 implies, for each j € [¢], Ri.1 contains
at least a;11n’* trails P on £ + k — 2 vertices such that D(P) = {a;,b;}. We apply
Lemma 9.9 with ajq1, fis1, %, ¢ — k, Ri41 in the roles of o, p1,7, ¢, H to obtain edge-
disjoint trails P, ..., P; in R;;; such that, for each j € [¢],

(i) P; has ¢ + k — 2 vertices and D(P;) = {a;, b},

(ii) the vertices of P; outside a; and b; are all distinct and

(iil) Ap—1(Ujerg B) < pivin.
Note that e; U B; is Cék), so J; U Uje[t] Pj has a Cék)—decomposition Cl. Tt is easy to see

that by taking C; = C;—1 U C] we obtain a Cék)—packing satisfying (9.8) with ¢ instead
of i — 1.

Step 8: The last stage. For the last stage, a few changes are needed. This is because in
the previous stages we used edges from H;.1 to extend paths in H;, which is no longer
possible at this stage. Instead, we rely on the path decompositions ensured by (—_1).
As before, we define J,_; = Jy_q — | JCk—2. For every vertex v € V(H)\U,
we let F(v) = Ly, n Jy_1 be the link graph of v in the hypergraph J,_;. Note
that F'(v) is completely contained in U. We shall apply (—_1) to find a P,gk_l) -
decomposition in F(v). For this, we first prove that [F(v)| = degj (v) is divis-
ible by k. Indeed, (CD3) says that degy(v) is divisible by k, and since Jy_; =
H — H[U] = UC — UCk—2 we have degj (v) is divisible by k as well. Moreover,
because of (9.7) and (9.9) we have that
2
SO (F(v)) = ]%n - Z Hin = Qi
0<j<k—1
Hence, (—_1) yields a P{*~1)-decompositon of F(v). Notice that each path in this
decomposition corresponds to a P,gﬁ)l in J,_; when we include the vertex v in every
edge. Call this P,gﬁ)l—packing P, and observe that paths from P, and P, are edge-
disjPint for every u # v. This means P = UveV(H)\U P, is a P,gﬁ)l—decomposition
of J k—1-



32 A. LO, S. PIGA, AND N. SANHUEZA-MATAMALA

Now we continue as in the previous stages and observe that
Ap-1(Jp1) < Apo1(J) + Ap_1(Re—1) < yn+ 2pp_1an =y,

which implies that D(P) (without simplification) is ~x-sparse. Moreover, (9.8) implies
that

8O((H — Ch2)[U]) = 6PN (H[U]) = o|U],

By Lemma 6.1, for any P € P with D(P) = {a~!,b™ '}, (H — C,_5)[U] contains at
least an’~*~1 trails Q on ¢ + k — 3 vertices such that D(Q) = {a,b}. Finally, we
apply Lemma 9.9 as in the previous stages to obtain edge-disjoint trails {Qp : P € P}
in (H — Cr—2)[U] such that, for each P € P,

(i) Qp has £ + k — 3 vertices and D(Qp) = {a, b} such that D(P) = {a~!, b~ !},

(ii) the vertices of Qp outside D(Qp) are all distinct and

(iil) Ag—1(Upep @pP) < pin.
Each P u Qp forms a Cék) $0 Ji_1 U Upep @r = Upep(P v Qp) has a Cék)—
decomposition C;_;. Thus, recalling (9.8), it is easy to see that the C’ )—packmg
C* = C U Ci_2 U C;_, satisfies the requirements of the lemma. [ |

10. EULERIAN TOURS

We first show that a lower bound of (essentially) n/2 on the codegree of k-graphs is
necessary to ensure that every edge is in some tight cycle. The bound is asymptotically
tight by Lemma 6.1 (which can be used to find cycles which contain any given edge).
This also provides the lower bound in Theorem 1.5.

Proposition 10.1. For all k = 3 and m = 2, there exists a k-graph H on n = 2mk
vertices with 6(H) = n/2 — 2k + 1 such that deg(v) is divisible by k for all v e V(H)
and there is an edge that is not contained in any tight cycle. In particular, we have
the bounds 5Cycle, o= 1/2.

Proof. Let A and B be disjoint vertex-sets each of size mk. Recall that, for 0 < i < k,

we defined H; = Hi(k) (A, B) as the k-graph with vertex set A U B such that e € H; if
and only if |e n B| = i. Consider the k-graph

= J  #Y@AB),
ie({0}u[kD\{1,k—1}

and observe that 6(H*) > n/2 — k + 1. Note that each vertex has the same vertex-
degree. By removing at most k — 1 perfect matchings in each of H*[A] = Hy(A, B)
and H*[B] = Hy(A, B), we may assume that each vertex has vertex-degree divisible
by k. Additionally, remove edges aj---ar € H*[A] and by ---by € H*[B] and add
two edges ay - --ap_1b and by ---bi_ja. Call the resulting graph H. Note that the
bound 6(H) > n/2 — 2k + 1 holds, and for every vertex v, dg(v) is divisible by k.

We now claim that the edge a; - - - ap_1bg is not contained in any tight cycle. Indeed,
for k = 3, note that degy(aibs) = degpy(azbs) = 1, so ajazbs can only be the end of
any tight path implying that ajasbs is not contained in any tight cycle. Now assume
that k > 4. Since aj - - - ag_1by, is the only edge in H n H*(A, B) (i.e. with exactly k—1
vertices in A) any tight path of length containing a; - - - ax—1by internally must travel
from H°(A, B) to |J;»o H'(A, B). However, there is no other edge in H n H'(A, B)
to close this tight path into a cycle.

Since we have ensured every degree in H is divisible by k, this construction shows

that 6% 6% > 1/2. N

cycle’ “Euler

We split the other inequalities in Theorem 1.5 into several lemmas.

Lemma 10.2. For k > 3, (5(Ek) < o®

uler cycle®
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Proof. Let £ = k? and k > 3. Let 0 < 1/n « 7 « pu < €. Let H be a k-graph on n
vertices with 6(H) > (5&%16 + &) n such that degy (v) is divisible by k for all v € V/(H).
Note that §(H) > (1/2+ ¢)n by Proposition 10.1. Let o1, ...,0: be an enumeration of
all ordered (k — 1)-tuples of V(H), so t = n!/(n — k + 1)!. For each i € [t], let a; = o;
and b; = 0!}, with indices taken modulo t. Let S = {a;,b; : i € [t]} be the multisets.
Note that S is y-sparse. By Lemma 6.1, for all i € [t], H contains at least en’ trails P
on ¢ + 2(k — 1) vertices such that D(P) = {a;,b;}. Apply Lemma 9.9 to obtain
edge-disjoint trails {P; : i € [t]} in H such that, for each i € [¢],
(i) P; has £ + 2(k — 1) vertices and D(P;) = {a;, b;};

(ii) the vertices of P; outside D(P;) are all distinct and

(i) Ap—1(Ujerq £i) < pn.
Let P = {c[q > and note that (after joining trails) we obtain a tour in H. Consider
the k-graph H' = H — P. Note that degy/(v) is divisible by k for all v € V(H’)
and 6(H') = 6(H) — un = (6%),. +/2)n. Thus there is a cycle-decomposition C of H'.

cycle
By attaching each cycle to the tour P, we obtain an Eulerian tour in H. Hence we
obtain 6}, < Cygle, as desired. |

Lemma 10.3. For k >3 Cycle <o) .

Proof (sketch). Let 6 = 51(5uler, by Proposition 10.1 we have § > 1/2. Given ¢ > 0,
let n be sufficiently large and let H be a k-graph on n vertices with §(H) = (0 + 2¢)n
with all vertex-degree divisible by k. It is enough to show that H is decomposable into
cycles.

The idea is to use the iterative absorption framework. Indeed, since 6 > 1/2, we
have 62 (H) > 4en. Thus there exists ¢ large enough (depending on ¢ only) such that
the Vortex lemma (Lemma 4.1) and the Cover-down lemma (Lemma 4.2) work in this
setting. Thus it is possible to find a vortex Uy 2 U; 2 --- 2 U; to find a C’}k)—packing
which cover all edges except but those located in U;. In fact, we can assume that
the leftover F' € H[U;] satisfies §(F') = (0 + ¢)|U| (see the proof of Theorem 1.3 in
Section 4 for detailed calculations to make these two steps work). The only missing
step is the construction of an absorber for such a constant-sized leftover.

The key observation here is that since the leftover F will satisfy §(F') = (d+¢)|Uy|, we
can assume that F' admits an Euler tour. Since an Euler tour admits an edge-bijective
homomorphism from a cycle, we can easily build a cycle-decomposable transformer
between such a leftover and a cycle, and this step requires only 6 (H) > en (this is
exactly what is done in the proof of Lemma 4.3). [ |

Lemma 10.4. For k >3, 0%, < infysp{6c®}.

C

Proof. Let 6 = infy~{dc(®}. Note that 6 > 1/2 by Proposition 10.1.

Let 1/n « ¢ and let H be a k-graph on n vertices with §(H) = (§ + 3)n and every
degree divisible by k. By the definition of infimum, there exists ¢ (depending on &
only) such that éc(*) < +e. Since 6(H) > (1/2+ 2¢)n, we can use Lemma 6.1 to find
a cycle C' whose removal leaves a number of edges divisible by ¢. Thus §(H — C) >
(6 4+ 2¢e)n = (0¢® + €)n, and therefore H — C' admits a C’( ) -decomposition. Together
with C, this is a cycle decomposition of H. |

Theorem 1.5 follows immediately from Lemma 10.2, Lemma 10.4, Proposition 10.1
and Theorem 1.3.

11. CONCLUDING REMARKS

Theorem 1.5 and Theorem 1.3 show that, for all £ and sufficiently large ¢, the
inequalities 1/2 < o), = 5(k)1 < dc® < 2/3 are valid. For k = 3, the second and
third authors [14] gave an example shovvlng that 6§),., = 2/3 and thus in this the we
actually have the equality 68, = 60),, = dc(® = 2/3 holds for all large ¢. However,

cycle
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we were unable to generalise the examples presented there for & > 4. Our best example

(Proposition 10.1) gives us 6¥),. > 1/2, so we propose the following question.

cycle

Question 11.1. Does there exist k = 4 such that 6, > 1/27?

cycle

We gave a new lower bound for the fractional Cék)—decomposition threshold 6¢()
in Proposition 2.1. Moreover, when k/gcd(4, k) is even or ged(¢, k) = 1, we are able
to calculate the value given by our bound in a explicit form (see Corollary 2.3). Is
the construction given by Proposition 2.1 best-possible? We would like to propose the
following weaker question.

Question 11.2. Given k = 2, does there exist £y such that, for all £ > £y with £ £ 0

mod k, ® < i+ ﬁ?

When k = 2, we believe that ¢y should be 1, which also implies the Nash-Williams
conjecture [13] on 0, (c.f. [3, Theorem 1.4]).
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