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Abstract. Given a family of 3-graphs F , the uniform Turán density π pFq is defined as
the infimum d P r0, 1s for which any sufficiently large uniformly d-dense 3-graph — that is,
a 3-graph which has edge-density at least d on all linearly sized subsets — contains a copy
of some F P F . Let Π ,fin denote the set of all possible uniform Turán densities of finite
families. Erdős, Hajnal, and Rödl introduced a family of constructions for lower bounds
on uniform Turán densities called palette constructions. We show that Π ,fin contains
every d that is obtained as the uniform density of an optimized palette construction. A
corollary of this is that Π ,fin contains the set of Lagrangians of 3-graphs and includes
irrational numbers. Our work complements a recent result of Lamaison, which states that
every value in Π ,fin can be approximated by uniform densities of palette constructions.

§1 Introduction

For n P N and a family F of k-uniform hypergraphs (or k-graphs), let the extremal
number expn,Fq be the maximum number of edges in a k-graph G on n vertices that does
not contain a copy of any F P F . Such a k-graph G is called F-free. It is well known
that the quantity expn,Fq{

`

n
k

˘

is decreasing [ 19 ], and therefore one may define the Turán
density of a family F as

πpFq :“ lim
nÑ8

expn,Fq
`

n
k

˘ .

When the family F “ tF u is a single k-graph, we usually denote πpFq by πpF q. Let Πpkq
8

be the set of all possible Turán densities of families of k-graphs and let Πpkq

fin be the set of
Turán densities of finite families F .

The study of Turán densities was initiated by Turán [ 36 ], who determined expn, F q

when F is the complete (2-)graph. Erdős, Stone, and Simonovits [ 9 ,  11 ], generalised this by
establishing that

πpF q ě
χpF q ´ 2
χpF q ´ 1 ,
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where χpF q is the chromatic number of F . Their proof also gives that

Πp2q
8 “ Πp2q

fin “

"

k

k ` 1 : k P Ně0

*

.

For higher uniformities, the problem becomes considerably harder and, despite much
effort, remains wide open even for 3-graphs. Determining the Turán density even for
seemingly “simple” 3-graphs is notoriously difficult. Perhaps the most famous open
problem is finding the Turán density of the complete 3-graph on four vertices, Kp3q

4 . In
fact, even πpK

p3q´

4 q, the Turán density of the 3-graph with four vertices and three edges, is
unknown.

A different line of research investigates properties of the set of Turán densities. Disproving
a 1000$ conjecture by Erdős, Frankl and Rödl [ 15 ] showed that for k ě 3 the set Πpkq

8

is not well-ordered, i.e., there exists some α P r0, 1q such that for every ε ą 0, the
set pα, α ` εq X Πpkq

8 is not empty. This indicates how much more difficult the hypergraph
Turán problem is for k-graphs with k ě 3. Recently, Pikhurko [ 30 ] proved a series of results
concerning Πpkq

8 and Πpkq

fin . In particular, he showed that Πpkq
8 ‰ Πpkq

fin , Πpkq
8 is uncountable,

and, using a result by Brown and Simonovits [ 7 ], that Πpkq
8 “ Πpkq

fin . However, the full
description of the sets Πpkq

8 and Πpkq

fin remains open. For more on the hypergraph Turán
problem, we refer to the survey by Keevash [ 20 ].

Here we consider a variant of the Turán density suggested by Erdős and Sós [ 10 ,  12 ].
Throughout the rest of the paper, we focus on 3-graphs. For d P r0, 1s and η ą 0, we say
that a 3-graph H on n vertices is pd, ηq-dense if for all X Ď V pHq, we have

epXq ě d

ˆ

|X|

3

˙

´ ηn3 .

The uniform Turán density π of a family F of 3-graphs is defined as

π pFq “ suptd P r0, 1s : for every η ą 0 and n P N, there exists

an F -free, pd, ηq-dense 3-graph H with |V pHq| ě nu .

In other words, π pFq is the smallest d P r0, 1s such that there is some η ą 0 such that
every sufficiently large 3-graph H on n vertices that is pd ` op1q, ηq-dense contains a copy
of some F P F .

Erdős and Sós specifically asked to determine π pK
p3q

4 q and π pK
p3q´

4 q. Similarly as with
the original Turán density, these problems turned out to be very difficult. Only recently,
Glebov, Král’, and Volec [  18 ] and Reiher, Rödl, and Schacht [  34 ] independently solved the
latter, showing that π pK

p3q´

4 q “ 1{4, which confirmed a conjecture by Erdős and Sós. We
refer to Reiher’s survey [ 31 ] for a full description of the landscape of extremal problems in
uniformly dense hypergraphs.
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Similarly as for the original Turán density, let Π ,8 be the set of all possible uniform
Turán densities of families and Π ,fin the set of all possible uniform Turán densities of
finite families. In order to state and discuss the main result of this paper, we need to
introduce the concept of Lagrange polynomials, which go back to the work of Motzkin
and Straus [  27 ]. Given n P N and a subset of ordered triples (which will later be called a
“palette”) P Ď rns3, we define the Lagrange polynomial of P as

λP px1, . . . , xnq “
ÿ

pi,j,kqPP

xixjxk ,

and the Lagrangian of P , denoted as ΛP , as the maximum of λP px1, . . . , xnq subject
to x1 ` . . . ` xn “ 1 and xi P r0, 1s for all i P rns. Let Λpal be the set of all possible ΛP .
In [  21 ], it was shown that Λpal Ď Π ,8 and, as a corollary, that the set Π ,8 is not well-
ordered and contains irrational numbers. However, the families constructed in the proof
were all infinite, which does not shed light on the possible values of Π ,fin. Here we extend
the result in [ 21 ] by showing that Λpal Ď Π ,fin.

Theorem 1.1. For all λ P Λpal, there is a finite family F of 3-graphs with π pFq “ λ.

Until recently, the only known members of Π ,fin were 0, 1{27, 4{27, 1{4, and 8{27 [ 16 – 18 ,
 32 ,  34 ]. Recently, two infinite families of uniform Turán densities were obtained: one
converging to 1{2 [ 24 ] and another being the uniform Turán densities of large stars [ 26 ].
All of these densities are rational numbers. A corollary of Theorem  1.1 is that there exist
irrational uniform Turán densities of finite families (e.g., see Observation 6.1, [  21 ]).

Interestingly, one of the core steps (Lemma  4.1 ) in our proof is about structural Ramsey
theory. The proof of this key lemma relies on the partite construction method of Nešetřil
and Rödl [ 28 ], and for this reason the bounds on the graphs in F are enormous. A
generalization of the aforementioned lemma was obtained independently by Král, Kučerák,
Lamaison, and Tardos [  23 ].

§2 Palettes

In this section, we present the main technical result of this paper. To do so, we first
define the notion of a palette.

Definition 2.1. A palette is a pair P “ pC,Eq consisting of a set of colors C and a set of
patterns E Ď C3.

Although this definition is very similar to that of ordered 3-graphs, note that a palette
may contain degenerate patterns, i.e., patterns that contain fewer than three colors. We
denote the set of colors of a palette P by CpP q, while P should be understood as the set of
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patterns EpP q. Let cpP q and epP q be the number of colors and the number of patterns of P ,
respectively, and let dpP q :“ epP q{cpP q3 be its density. Note that for p P P , tpu can be
viewed as a palette itself and as usual we omit the parentheses when writing Cppq etc. We
say that P is non-degenerate if every pattern of P is non-degenerate, i.e., for every p P P , it
holds that cppq “ 3. Given a subset U Ď CpP q of colors, let P rU s be the induced subpalette
on U . That is, the palette with CpP rU sq “ U and P rU s :“ tp P P : Cppq Ď Uu.

Given two palettes P and Q, a (palette) homomorphism from P to Q is a map ψ : CpP q Ñ

CpQq such that for every pattern p “ pc1, c2, c3q P P , we have ψppq “ pψpc1q, ψpc2q, ψpc3qq P

Q. As with hypergraphs, we usually do not distinguish between isomorphic palettes. If
there is an injective homomorphism from P to Q, we also say that P is contained in Q

(or that P is a subpalette of Q), denoted by P Ď Q. We say that a palette Q is a
blow-up of a palette P if it can be obtained from P by replacing every color with some
number of copies of itself. More formally, we say that Q is a blow-up of P with partition
structure CpQq “

Ť

cPCpP q
Vc for some pairwise disjoint sets Vc, c P CpP q, if

Q “ tpx1, x2, x3q : xi P Vci
for all i P r3s and pc1, c2, c3q P P u .

Note that P is contained in a blow-up of Q if and only if there is a homomorphism from P

to Q. In the case that there is not only a homomorphism from P to Q but an isomorphism,
we denote this by P – Q.

Given a 3-graph F “ pV,Eq on n vertices, we say that P paints F if there exists a
total ordering J of V and a coloring χ : V p2q Ñ CpP q such that for every edge xyz P E

with x J y J z, we have

pχpxyq, χpxzq, χpyzqq P P. (2.1)

Sometimes we refer to such a tuple pJ, χq as a painting of F (using P ). If there is no
painting of F using P , we say that P does not paint F , or alternatively, that P is F -
deficient. We say that P does not paint a family F , or is F -deficient, if P does not paint F
for every F P F .

Palettes were introduced in [ 8 ,  31 ,  35 ] in the context of describing a general lower bound
construction for the uniform Turán density, called the Palette construction. Given a
family F of 3-graphs and a palette P Ď rts3 on t colors such that P is F-deficient, we
construct an F-free hypergraph H with vertex set rns as follows. Let x1, . . . , xt P r0, 1s

with
řt
i“1 xi “ 1, and let χ : rnsp2q Ñ rts be an auxiliary coloring defined probabilistically

by coloring each pair independently with

Ppχpabq “ iq “ xi, @ab P rns
p2q, i P rts.
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The edges of the hypergraph H are defined using the auxiliary coloring χ as follows

H :“ tabc P rns
p3q : a ă b ă c and pχpabq, χpacq, χpbcqq P P u .

One can observe that by definition, P paints H and therefore paints any subgraph of H.
Hence, since P is F -deficient,H is F -free. Moreover, the probability that a triple abc P rnsp3q

is an edge in H is given by

Ppabc P Hq “
ÿ

pi,j,kqPP

xixjxk.

It can be shown, by a standard application of concentration inequalities, that for each η,
with high probability the hypergraph H is pd, ηq-dense for d “

ř

pi,j,kqPP xixjxk when n is
taken sufficiently large.

The construction above naturally motivates the next definition. Denote the standard
pr ´ 1q-simplex by

Sr :“ tpx1, . . . , xrq P r0, 1s
r : x1 ` . . . ` xr “ 1u.

Definition 2.2. A weighting of a palette P is a vector x “ pxiqiPCpP q P ScpP q. Given a
palette P with a weighting x, set

λP pxq :“
ÿ

pi,j,kqPP

xixjxk .

We define the palette Lagrangian ΛP of P as

ΛP :“ max
xPScpP q

λP pxq.

As defined in Section  1 , the set of values obtained as the Lagrangian of a palette is
denoted by Λpal :“ tΛP : P is a paletteu. A consequence of the construction shown above
is the following folklore result.

Fact 2.3. Let P be a palette and let F be a family of 3-graphs such that P is F-deficient.
Then π pFq ě ΛP .

A folklore conjecture in the area, stated formally in [ 31 ], is that every lower bound
for a uniform Turán density should be obtained by a palette construction. In a recent
breakthrough, Lamaison [ 24 ] proved an approximate version of the conjecture showing that
for every family F , the Turán density π pFq can be approximated by a sequence of palette
Lagrangians. In this paper, we prove in some sense the converse of the conjecture: Every
palette Lagrangian is the uniform Turán density of some finite family F .

The proof of our main result proceeds by transferring the original problem to a Turán-
type problem for palettes. For this it is crucial that the property of being F-deficient is
invariant under homomorphisms.
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Fact 2.4. Let P and Q be two palettes such that there exists a homomorphism ψ : Q Ñ P ,
and let F be a family of 3-graphs. If P is F-deficient, then Q is F-deficient.

Proof. Suppose, to the contrary, that Q paints some F P F . Then there exists an ordering J
of V pF q and a coloring χ : V pF qp2q Ñ CpQq satisfying ( 2.1 ). Hence, by definition, the
ordering J and the coloring ψ ˝χ : V pF qp2q Ñ CpP q witness that P paints F , contradicting
the assumption that P is F -deficient. □

The first consequence of Fact  2.4 is that the property of being F -deficient is closed under
taking subpalettes. In particular, this allows us to define the palette Turán density of
families of 3-graphs. Given a family F of 3-graphs, we define the palette extremal number
of F by

expalpn,Fq :“ maxtepP q : P is an F -deficient palette with cpP q “ nu,

i.e., the maximum number of patterns an F-deficient palette with n colors can have.
Similarly as for hypergraphs, one can show that the quantity expalpn,Fq{n3 converges to a
limit.

Proposition 2.5. The limit lim
nÑ8

expalpn,Fq

n3 exists.

Proof. Recall that a palette P is non-degenerate if every pattern of P contains 3 distinct
colors. For a family F of 3-graphs and an integer n ě 3, we define the parameter gpn,Fq

by

gpn,Fq :“ maxtepP q : P is a non-degenerate F -deficient palette with cpP q “ nu.

We claim that the quantity gpn,Fq

npn´1qpn´2q
is non-increasing. Indeed, let P be a non-degenerate F -

deficient palette on n ` 1 colors that has gpn ` 1,Fq patterns. Take a random sub-
set U Ď CpP q of size n and let P rU s be the induced subpalette on this set of colors. Then,
by Fact  2.4 , we have that P rU s is F -deficient and consequently epP rU sq ď gpn,Fq. Hence,

gpn,Fq ě EpepP rU sqq “
n ´ 2
n ` 1gpn ` 1,Fq ,

which implies that gpn`1,Fq

pn`1qnpn´1q
ď

gpn,Fq

npn´1qpn´2q
. Since every non-negative non-increasing

sequence has a limit, we obtain that lim
nÑ8

gpn,Fq

npn´1qpn´2q
exists. The proposition now follows

by the simple observation that gpn,Fq ď expalpn,Fq ď gpn,Fq ` 3n2. □

We define the limit obtained in Proposition  2.5 as the palette Turán density of a family F ,

πpalpFq :“ lim
nÑ8

expalpn,Fq

n3 .
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A consequence of the work in [ 24 ,  31 ] is that πpalpFq “ π pFq for finite F (see Section  7 

for more details). Therefore, to show Theorem  1.1 , it suffices to show that every palette
Lagrangian is attained as a palette Turán density of a finite family.

By taking the uniform weighting x “ pxiqiPCpP q defined by xi “ 1{cpP q, we obtain that

dpP q ď ΛP . (2.2)

Moreover, if y “ pyiqiPCpP q is an optimal weighting for the palette P , then one can
approximate ΛP by taking a sequence of blow-ups tSpℓquℓPN of P with partition struc-
ture CpSpℓqq “

Ť

iPCpP q
V

pℓq
i such that |V

pℓq
i |{cpSpℓqq Ñ yi. Conversely, every blow-up of P

yields a weighting for P . Hence, it follows that

ΛP “ lim
nÑ8

maxtdpSq : S is a blow-up of P with cpSq “ nu. (2.3)

The equality in ( 2.3 ) and the fact that the property of being F-deficient is blow-up
invariant (Fact  2.4 ) hint at a way to obtain a palette Lagrangian as a palette Turán density:
finding a finite family F such that the extremal constructions for expalpn,Fq are exactly the
family of blow-ups of P . Unfortunately, such a family does not always exist (see Section  4 ),
but by adding an extra family of extremal constructions with the same palette Lagrangian,
one can achieve such a goal. Given a palette P , we define the reverse palette revpP q of P
as

revpP q “ tpc, b, aq : pa, b, cq P P u.

That is, revpP q is the palette obtained by reversing the order of the patterns of P . We say
that a palette P is reduced if for every proper subpalette Q Ĺ P , we have ΛQ ă ΛP . We
follow the graph convention and let EXpalpn,Hq “ tQ : epQq “ expalpn,Hq and cpQq “ nu

be the set of extremal palettes. The following is the main technical result of this paper.

Theorem 2.6. Let P be a reduced palette. There exists a finite family H such that P
is H-deficient and for all n P N

EXpalpn,Hq Ď tQ : Q is a blow-up of P or a blow-up of revpP q and cpQq “ nu . (2.4)

In particular, it immediately follows that

expalpn,Hq “ maxtepQq : Q is a blow-up of P with cpQq “ nu .

We remark that P is not necessarily isomorphic to revpP q. As a simple example, consider
P “ tp1, 2, 3q, p1, 3, 2qu and revpP q “ tp2, 3, 1q, p3, 2, 1qu. One can verify that in this case,
P fl revpP q.



8 D. KING, S. PIGA, M. SALES, AND B. SCHÜLKE

Organization. The paper is organized as follows. The proof of Theorem  2.6 relies on
three main ingredients. The first is a palette variant of the removal lemma introduced
in [ 2 ], so in Section  3 we use a regularity lemma for palettes to prove counting and removal
lemmata for palettes painting graphs. The second is a structural Ramsey result in Section  4 ,
dedicated to the problem of distinguishing palettes based on the graphs they can paint.
The third component is a stability argument based on the work of [ 30 ] (Sections  5 and  6 ).
For a brief outline of the proof of Theorem  2.6 , the reader may refer to the introduction of
Section  6 . Finally, in Section  7 , we present a proof of Theorem  1.1 .

§3 Regularity lemma for palettes

For graphs, the following infinite removal lemma was shown in [ 3 ] (and a hypergraph
analogue in [ 5 ]).

Lemma 3.1. Given a (possibly infinite) family of graphs F and α ą 0, there are M,n0 P N

and β ą 0 so that the following holds for every graph G on n ě n0 vertices. If, for
every F P F with vpF q ď M , G contains fewer than βnvpF q copies of F , then G can be
made F-free by removing at most αn2 edges.

The aim of this section is prove a version of this lemma for palettes. Instead of counting
the number of copies of some F P F , we need to count the number of ways that a palette P
paints F . This is made precise in the following definition.

Definition 3.2. Let F be a 3-graph and P a palette. The number of ways that P paints F
is defined as the number of maps φ : BF Ñ CpP q for which there exists a total ordering ă

of V pF q such that pă, φq is a painting of F .

We are now prepared to state the aforementioned removal lemma.

Lemma 3.3 (Palette Removal Lemma). Given a (possibly infinite) family of 3-graphs F
and α ą 0, there are M “ M

 3.3 

, N “ N
 3.3 

P N and β “ β
 3.3 

ą 0 such that the following
holds for every palette P on n ě N colors. If, for every s P r

`

M
2

˘

s, P paints the 3-
graphs F P F with |BF | “ s and vpF q ď M in less than βns ways, then there is an F-
deficient palette Q Ď P with |P ∖Q| ď αn3.

The proof of Lemma  3.3 is given at the conclusion of this Section. Similar to the proof
of Lemma  3.1 for graphs, it will require a regularity theory for palettes. In some ways it is
helpful to consider a palette merely as essentially an oriented 3-graph, since the number of
degenerate patterns is Opn2q. Let us define what it means for sets of colors in a palette to
be ε-regular. Let P be a palette and suppose that W1,W2,W3 Ď CpP q are non-empty. We
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set EpW1,W2,W3q “ pW1 ˆ W2 ˆ W3q X P and epW1,W2,W3q “ |EpW1,W2,W3q| 

1
 . Then

the density of P induced on pW1,W2,W3q is given by

dpW1,W2,W3q :“ epW1,W2,W3q

|W1||W2||W3|
.

Definition 3.4. We call pV1, V2, V3q ε-regular if, for all W1 Ď V1,W2 Ď V2,W3 Ď V3

with |Wi| ě ε|Vi|, i P r3s, we have

|dpW1,W2,W3q ´ dpV1, V2, V3q| ď ε .

As discussed above, the most important feature of the above definition is that it is
sensitive to order, and the regularity of pV1, V2, V3q has no bearing on the regularity
of pV2, V1, V3q. However, we can derive many properties of these regular color sets by
applying corresponding results in the unoriented hypergraph setting (see Lemma  3.10 

below), so we give this definition as well. Let H “ pV,Eq be a 3-graph and suppose
that X1, X2, X3 Ď V are non-empty. We set

EpX1, X2, X3q “ txyz P E : x P X1, y P X2, z P X3u

and epX1, X2, X3q “ |EpX1, X2, X3q|. Then the density of H induced on X1, X2, X3 is
given by

dpX1, X2, X3q :“ epX1, X2, X3q

|X1||X2||X3|
.

Definition 3.5. Suppose H “ pV,Eq is a 3-graph and that X1, X2, X3 Ď V pHq are
non-empty. We call X1, X2, X3 ε-regular if, for all Y1 Ď X1, Y2 Ď X2, Y3 Ď X3 with |Yi| ě

ε|Xi|, i P r3s, we have
|dpY1, Y2, Y3q ´ dpX1, X2, X3q| ď ε .

As usual we will be interested in partitioning CpP q into a large (but bounded) number
of parts so that most pVi, Vj, Vkq are regular, so we also need the standard notions of
equipartitions and refinements.

Definition 3.6. Given a set C, an equipartition A of C is a partition C “
Ť

¨ iPrts Vi,
so that ||Vi| ´ |Vi1 || ď 1 for all i, i1 P rts. A refinement of A is an equipartition B “
Ť

¨ iPrts

Ť

¨ jPrℓs Vi,j with Vi,j Ď Vi for all i P rts and j P rℓs. We also identify A with the family
of partition classes, i.e., A “ tVi : i P rtsu.

Our palette analogue of the well-known Szemerédi regularity lemma is the following.

Theorem 3.7. For all ε ą 0 and m P N there exist M “ M
 3.7 

, N “ N
 3.7 

P N so that given
any palette Q with cpQq ě N there is an equipartition A “ tVi : i P rtsu of CpQq so that

1For ease of notation we suppress the dependency on P when it is clear from the context.
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(1) m ď t ď M and
(2) the ordered triple pVi, Vj, Vkq is ε-regular for all but εt3 of pi, j, kq P rts3.

Moreover, given some equipartition A0 of CpQq with at most m parts, there is an A as
above which refines A0.

In our application we need a strengthening of this; in particular, the ε-regularity obtained
should be allowed to depend on the number of parts t in the partition, as follows.

Corollary 3.8. For all non-increasing maps E : N Ñ p0, 1s and m P N there are M “

M
 3.8 

, N “ N
 3.8 

and δ “ δ
 3.8 

ą 0 so that given any palette Q with cpQq “ n ě N there is
are an equipartition A “ tVi : i P rtsu of CpQq and an equipartition A1 “ tUi : i P rtsu of
some subset of CpQq so that:

(i ) m ď t ď M ,
(ii ) Ui Ď Vi with |Ui| ě δn,

(iii ) the ordered triple pUi, Uj, Ukq is Eptq-regular for all pi, j, kq P rts3, and
(iv ) we have |dpUi, Uj, Ukq ´ dpVi, Vj, Vkq| ă Ep0q for all but Ep0qt3 of pi, j, kq P rts3.

The proof of Theorem  3.7 follows along the standard technique of iterated refinement
used for graph and weak hypergraph regularity, and the method to obtain Corollary  3.8 

from Theorem  3.7 was developed in [ 2 ] for graph-testing problems. For the interested
reader we include the proofs of Theorem  3.7 and Corollary  3.8 in Appendix  A .

Before we prove Lemma  3.3 , we show a counting lemma for the number of ways in
which a palette paints a 3-graph. We use the following result, which counts the number
of copies of a linear hypergraph inside a regularly partitioned hypergraph. We state only
the 3-uniform case.

Lemma 3.9 ([ 22 , Lemma 10]). Given γ, d0 ą 0 and ℓ P N there are ε “ ε
 3.9 

pγ, d0, ℓq

and N “ N
 3.9 

“ pγ, d0, ℓq such that the following holds. Let F be a linear 3-graph
with V pF q “ rℓs and H an ℓ-partite 3-graph on parts V1, . . . , Vℓ with |Vi| ě N for each i P rℓs.
Suppose that tViuiPf is ε-regular with density df ě d0 for every f P EpF q. Then the number
of copies of F in H that map each vertex i P rℓs to Vi is at least p1 ´ γqd

epF q

0
ś

iPrℓs |Vi|.

By creating a hypergraph which captures the structure of P , we can obtain a similar
statement estimating the number of ways in which P paints a given 3-graph F .

Lemma 3.10. Given γ, d0 ą 0 and s P N there are ε “ ε
 3.10 

pγ, d0, sq and N “ N
 3.10 

“

pγ, d0, sq such that the following holds. Let F be a 3-graph with |BF | “ s and P be a palette
whose colours are partitioned into CpP q “ V1 Ÿ . . . Ÿ Vs where |Vi| ě N for every i P rss.
Suppose there is an ordering ă of the vertices of F and a map φ : BF Ñ rss such that for
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each uvw P EpF q with u ă v ă w, the triple pVφpuvq, Vφpuwq, Vφpvwqq is ε-regular in P with
density at least d0. Then F is painted by P in at least p1 ´ γqd

epF q

0
ś

uvPBF |Vφpuvq| different
ways.

Proof. We write uvw for tu, v, wu whenever u ă v ă w for u, v, w P V pF q. Let F B be
a 3-graph with vertex-set BF and all edges of the form tuv, uw, vwu where uvw P EpF q.
Note that F B is linear and epF q “ epF Bq. For each uv P BF let V uv

i be a copy of Vi, and
label the copy of a P Vi as auv P V uv

i . Let H be a 3-graph with vertices V pHq “
Ť

¨
uvPBF
iPrks

V uv
i

and edges

EpHq “ tauvbuwcvw P V pHq
p3q : uv, uw, vw P BF, and pa, b, cq P P u .

In words, H is obtained by taking s “ |BF | copies of CpP q, indexed by uv P BF , and then
adding a 3-edge xyz only when x, y, and z are part of distinct copies and, when viewed
as an ordered triple in CpP q, they give a pattern in P . Now if pVi, Vj, Vkq is ε-regular in
the palette P (Definition  3.4 ), then the vertex sets pV uv

i , V uw
j , V vw

k q are ε-regular in H for
each uv, uw, vw P BF (Definition  3.5 ). Consider in particular the s sets given by V uv

φpuvq

for uv P BF . Since F B is linear, Lemma  3.9 yields at least p1´γqd
epF Bq

0
ś

uvPBF |V uv
φpuvq| copies

(or embeddings) of F B in H that map each uv P V pF Bq to some vertex in V uv
φpuvq. Write Ψ

for the collection of such embeddings. Let χ : V pHq Ñ CpP q be the projection map which
sends auv to χpauvq “ a. Note that for every ψ P Ψ, the tuple pă, χ ˝ ψq is a painting of F
using P and that any two distinct embeddings ψ, ψ1 P Ψ get projected to distinct paintings,
whence the number of such paintings is at least p1 ´ γqd

epF q

0
ś

uvPBF |Vφpuvq|. □

We are now ready to prove the removal lemma using the counting lemma.

Proof of Lemma  3.3 . Let PtpFq be the set of all palettes with color set rts which paint at
least one F P F .

We define the map vF : N Ñ Ně0 by

vFptq “ max
RPPtpFq

mint|V pF q| : F P F and R paints F u

(and vFptq “ 0 if PtpFq “ ∅). Since PtpFq is finite for every t, the maximum exists. The
idea is the following. Given a palette P that paints every small F P F in few ways, we
apply the palette regularity lemma. From this we obtain a “reduced” palette R with a
constant number of colors t and a “cleaned” palette Q similar to P . If Q would still paint
some F P F , then R would paint F and hence - using the definition of vF - some F 1 P F
with few vertices. Then the counting lemma entails that P must paint F 1 as well. Let us
formalize this argument.
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Given α ą 0, define the function E : N0 Ñ r0, 1s by

Eptq “

$

&

%

2α{9 if t “ 0 and

ε
 3.10 

p1{2, 2α{9,
`

vF ptq
2

˘

q if t ě 1 .

Note that we may assume that the functions N
 3.10 

pγ, d0, sq and ε
 3.10 

pγ, d0, sq are non-
decreasing and non-increasing in s, respectively. Let M

 3.8 

, N
 3.8 

, δ “ δ
 3.8 

be the constants
given by an application of Corollary  3.8 with E and

m ą 9{α . (3.1)

Finally, take

M “ max
rPrM

 3.8 

s
vFprq , N “ max

␣

N
 3.8 

,
1
δ
N

 3.10 

`

1{2, 2α{9,
ˆ

M

2

˙

˘(

, β ď
p2α

9 qpM
3 qδp

M
2 q

2 .

Now we argue that these choices of M , N , and β have the desired property. Given a
palette P with n ě N colors, apply (the conclusion of) Corollary  3.8 to obtain equipar-
titions A “ tVi : i P rtsu and A1 “ tUi : i P rtsu satisfying  (i ) - (iv ) . Note that in particu-
lar, |Ui| ě δN ě N

 3.10 

`

1{2, 2α{9,
`

M
2

˘˘

. We produce a ‘reduced’ palette R with CpRq “ rts

by including the pattern pi, j, kq in R if

(1 ) i, j, k are pairwise distinct,
(2 ) |dpUi, Uj, Ukq ´ dpVi, Vj, Vkq| ď Ep0q “ 2α{9, and
(3 ) dpUi, Uj, Ukq ą Ep0q “ 2α{9.

Let Q Ď P be the ‘cleaned’ version of P , where we delete all edges pa, b, cq P P with
a P Vi, b P Vj, c P Vk when pi, j, kq R R. In this way, it is easy to see that Q is contained in
a blow-up of R.

As in many other applications of the regularity lemma, it is not hard to check that

|P ∖Q| ď αn3 . (3.2)

Indeed, there are at most 3t2 triplets of indices not satisfying  (1 ) . Thus, due to ( 3.1 ), at
most 3t2pn{tq3 ď 3n3{t ď αn3{3 patterns are deleted in this way. By Corollary  3.8 Part  (iv ) 

there are at most Ep0qt3 “ 2αt3{9 triplets pi, j, kq such that |dpUi, Uj, Ukq ´ dpVi, Vj, Vkq| ą

Ep0q, meaning that at most n3{t3¨2αt3{9 ď 2αn3{9 patterns need to be deleted to ensure  (2 ) .
Finally, using that for the remaining triplets of indices  (2 ) holds, in  (3 ) we delete at
most 4αn3{9 edges.

Suppose for a contradiction that Q paints a hypergraph F P F . Since Q is contained
in a blow-up of R, it follows that R paints F as well. Therefore, keeping in mind
that cpRq “ t ď M

 3.8 

, there is some hypergraph F 1 P F painted by R with the additional
property that vpF 1q ď vFptq ď M . Let s “ |BF 1| ď

`

M
2

˘

and let φ : BF 1 Ñ CpRq “ rts be
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the coloring given by definition of painting (we leave the vertex ordering to be implicit).
Due to  (1 ) - (3 ) and  (iii ) in Corollary  3.8 , the map φ satisfies the conditions of Lemma  3.10 ,
when restricted to the subpalette U1 Ÿ . . . Ÿ Us, which implies that Q paints F 1 in more
than βns ways, a contradiction. □

§4 A Ramsey result

Given two distinct 3-graphs G and H such that neither is a subgraph of the other, there
always exists a 3-graph F with the property that G contains a copy of F , but H is F -free.
Indeed, one can take the 3-graph F to be G itself. It is somewhat natural to ask if the
same is true for palettes. That is, for what pairs of palettes P and Q, does there exist
a 3-graph F such that P paints F , but Q does not paint F? The goal of this section is to
answer this question. We remark that similar considerations were mentioned in [ 24 ].

Given a palette P on n colors, recall that the reverse palette revpP q of P as

revpP q “ tpc, b, aq : pa, b, cq P P u ,

that is, revpP q is the palette obtained by reversing the order of the patterns of P . Note
that a palette P paints a 3-graph F if and only if revpP q paints F . Indeed, this can be seen
by taking the ordering of the vertices in which P paints F and reversing it. A consequence
of this observation is that no graph can distinguish a palette P from revpP q. It turns out
that up to taking blow-ups, revpP q is the only palette for which there is no 3-graph that
distinguishes it from P . We remind the reader that a palette Q is contained in a blow-up
of P if there exists a homomorphism ψ : Q Ñ P . The next lemma is the main result in
this section.

Lemma 4.1. Let P and Q be palettes such that Q is not contained in a blow-up of P nor
in a blow-up of revpP q. Then there exists a 3-graph F such that P is F -deficient and Q
paints F .

The proof of Lemma  4.1 is completely Ramsey-theoretical and relies on a result of Nešetřil
and Rödl [ 28 ] about Ramsey classes for ordered Steiner systems. We start with some
preparations. An ordered k-graph pH,ăq is a pair where H is a k-graph and ă is a total
ordering of V pHq. Given two ordered hypergraphs pF,ăq and pH,ăq, we say that pF,ăq is a
subgraph of pH,ăq if there exists an injective order-preserving map ψ : V pF q Ñ V pHq that
is a homomorphism, i.e., a map such that ψpxq ă ψpyq for x ă y and such that ψpfq P EpHq

for every edge f P EpF q. Let
´

pH, ăq

pF, ăq

¯

denote the family of copies of pF,ăq in pH,ăq.
The next theorem shows that the class of ordered linear k-graphs is edge-Ramsey (see
also [  6 , Lemma 2.12] and [  33 , Corollary 3.12]).
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Theorem 4.2 ([ 28 ]). Let pG,ăq be an ordered linear k-graph with k ě 2, and let r ě 1 be
an integer. Then there exists an ordered linear k-graph pH,ăq and a family G Ď

´

pH, ăq

pG, ăq

¯

of copies of pG,ăq in pH,ăq satisfying the following statements:

piq For any r-coloring of the edges of H, there exists a monochromatic copy pG1,ăq P G.
piiq For any two distinct copies pG1,ăq, pG2,ăq P G, it holds that either |V pG1q X

V pG2q| ď 1 or V pG1q X V pG2q “ e for an edge e P G3 for some pG3,ăq P G.

We remark that for k “ 2, a linear k-graph is just a graph, and condition (ii) translates
to the fact that two distinct copies pG1,ăq and pG2,ăq P G intersect either in an emptys
set, a single vertex or in exactly one edge. Theorem  4.2 can be used to prove the following
Ramsey result about systems of graphs. We note that similar statements were obtained
previously in [ 1 ,  29 ].

Proposition 4.3. Let n, t ě 1 be integers, and let pG,ăq be an ordered graph where
G “

Ťn
i“1 Gi is the union of n pairwise edge-disjoint ordered graphs with vertex set V pGq.

Then there exists an ordered graph pH,ăq where H “
Ťn
i“1 Hi is the union of n pairwise

edge-disjoint ordered graphs with vertex set V pHq such that any t-coloring of H yields a
set X Ď V pHq with the following properties:

piq For 1 ď i ď n, we have pHirXs,ăq – pGi,ăq.
piiq For 1 ď i ď n, the graph HirXs is monochromatic.

Proof. For the sake of brevity, throughout the proof we will omit the total ordering ă

from the notation and denote an ordered graph pH,ăq by H. We inductively construct
ordered graphs A0, . . . , An such that for each 0 ď j ď n, the ordered graph Aj “

Ťn
i“1 A

j
i

is the union of n pairwise edge-disjoint ordered graphs on V pAjq as follows: Let A0 “ G

and A0
i “ Gi for 1 ď i ď n. Suppose now that for 1 ď j ď n we have already defined the

ordered graph Aj´1 and want to define Aj. Apply Theorem  4.2 to the ordered graph Aj´1
j

and t colors to obtain the ordered graph Ajj and a system of copies Aj Ď

´ Aj
j

Aj´1
j

¯

satisfying

properties (i) and (ii) of the statement. In particular, for any two copies B,B1 P Aj of
Aj´1
j we have that

|V pBq X V pB1
q| “ 1 or V pBq X V pB1

q Ď e (4.1)

for some edge e of some copy of Aj´1
j in Aj. For i ‰ j, let Aji be the ordered graph

on V pAjjq (with the same total ordering ă on V pAjjq) obtained by adding a copy of the
ordered graph Aj´1

i to each set of vertices V pBq with B P Aj, see Figure  4.1 . By ( 4.1 ),
each pair of copies B,B1 P Aj either intersects in a single vertex or in an edge of some copy
of Aj´1

j . Hence, keeping in mind that the graphs Aj´1
i are pairwise edge-disjoint, all Aji
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are pairwise edge-disjoint. We set Aj “
Ťj
i“1 A

j
i . The key point of the construction is that

the ordered graphs A0, . . . , An satisfy the following claim.

Figure 4.1. An example with n “ 2. The ordered graph A0
1 is in red and

A0
2 is in blue. On the second line we have the Ramsey graph A1

1 with several
copies of A0

1 all intersecting in either an edge or a single vertex. Finally, in
the last line we have the graph A1

2 on the same set of vertices.

Claim 4.4. Let 0 ď j ď n. Then every t-coloring of An contains a copy of Aj such that
the ordered graphs Ajk are monochromatic for j ` 1 ď k ď n.

Proof. We prove the statement by reverse induction on j. If j “ n, then the statement is
vacuously true. Now assume that for a t-coloring of An we obtain a copy Ãj`1 “

Ťn
i“1 Ã

j`1
i

of Aj`1 such that the ordered graphs Ãj`1
k are monochromatic for j ` 2 ď k ď n. Consider

the restriction of the t-coloring to the ordered graph Ãj`1
j`1. By construction and Theorem  4.2 ,

there exists a monochromatic copy Ãjj`1 of Ajj`1. For i ‰ j, let Ãji “ Ãj`1
i rV pÃjj`1qs. It is

easy to see that Ãj “
Ťn
i“1 Ã

j
i is a copy of Aj . Moreover, since Ãjk Ď Ãj`1

k for j`2 ď k ď n,
we have that Ãjk is monochromatic for j ` 1 ď k ď n. This concludes the proof of the
claim. □

Let H :“ An. Then by Claim  4.4 , every t-coloring of H contains a copy of A0 such that
every A0

i is monochromatic. Since A0 “ G, properties (i) and (ii) follow. □

The second auxiliary result establishes the existence of an ordered linear k-graph with
the property that, regardless of how one orders its vertices, there will always be an edge
which according to the new ordering is arranged in either a strictly increasing or decreasing
order (with respect to the original order). We remark that the problem becomes somewhat
simpler if we drop the condition that the k-graph is linear. Indeed, in this case, one can
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construct a graph by simply taking the complete k-graph on pk ´ 1q2 ` 1 vertices and
applying the Erdős–Szekeres theorem [ 13 ].

Proposition 4.5. For every integer k ě 2, there exists an ordered linear k-graph pH,ăq

with the following property. For any total ordering J of V pHq, there exists an edge
tx1, . . . , xku with x1 ă . . . ă xk such that either

paq the edge tx1, . . . , xku is increasing in J, i.e., x1 J . . . J xk; or
pbq the edge tx1, . . . , xku is decreasing in J, i.e., x1 K . . . K xk.

Proof. Let Sk be the group of all permutations on k elements, and let id, rev P Sk be the
permutations given by idpiq “ i and revpiq “ k ` 1 ´ i. In other words, id and rev are the
permutations that arrange the elements in increasing and decreasing order, respectively.
Suppose that σ P Sk∖tid, revu. Then there exist integers aσ, bσ, cσ, dσ P rks, not necessarily
distinct, satisfying aσ ă bσ, cσ ă dσ, and

σpaσq ă σpbσq and σpcσq ą σpdσq. (4.2)

For every permutation σ P Sk∖ tid, revu, we construct an ordered linear k-graph pGσ,ăq

as follows. Let Gσ be a k-graph on 3k ´ 3 vertices consisting of three edges e1, e2, and
e3, with |ei X ej| “ 1 for all i ‰ j. Let ă be an ordering of V pGσq with e1 “ tx1, . . . , xku,
e2 “ ty1, . . . , yku, and e3 “ tz1, . . . , zku, where the vertices are labeled in increasing order
in ă, such that

xaσ “ zcσ , xbσ “ yaσ , and ybσ “ zdσ . (4.3)

Observe that such an ordering is always possible (e.g., see Figure  4.2 ). Let pG,ăq be the
ordered k-graph obtained by taking the vertex-disjoint union of pGσ,ăq for all permutations
σ P Sk ∖ tid, revu. Our ordered linear k-graph pH,ăq is the k-graph obtained by applying
Theorem  4.2 to pG,ăq with t “ k! colors.

1 2 3 4 5 6 7 8 9

Figure 4.2. An example ofGσ for the permutation σ P S4 given by σp1q “ 3,
σp2q “ 1, σp3q “ 4 and σp4q “ 2 and aσ “ 2, bσ “ 3, cσ “ 1 and dσ “ 2.
The edges are given by e1 “ t1, 2, 4, 6u (green), e2 “ t3, 4, 5, 7u (blue) and
e3 “ t2, 5, 8, 9u (red).
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The importance of the k-graphs Gσ is illustrated in the next claim. Given an ordered
edge e “ tx1, . . . , xku with x1 ă . . . ă xk, a permutation σ P Sk, and a total ordering J,
we say that the edge e is σ-compatible with respect to the total ordering J if

xi J xj if and only if σpiq ă σpjq. (4.4)

In particular, the edge e is id-compatible with respect to ă.

Claim 4.6. Let σ P Sk ∖ tid, revu and let J be a total ordering of V pGσq. Then not all
the edges of pGσ,ăq are σ-compatible with respect to J.

Proof. Suppose, for the sake of contradiction, that J is a total ordering of V pGσq such that
all the edges are σ-compatible with respect to J. Let e1 “ tx1, . . . , xku, e2 “ ty1, . . . , yku,
and e3 “ tz1, . . . , zku be the edges of Gσ, where the vertices are labeled in increasing order
with respect to ă and satisfy ( 4.3 ). Since all the edges are σ-compatible with respect to J,
we have by ( 4.2 ), ( 4.3 ), and ( 4.4 ),

xaσ J xbσ “ yaσ J ybσ “ zdσ J zcσ “ xaσ ,

which is a contradiction. This concludes the proof of the claim. □

We are now ready to prove that pH,ăq satisfies the statement. Let J be a total ordering
of V pHq, and let Sk “ tσ1, . . . , σk!u be a labeling of the k! permutations. We define an
auxiliary coloring χ : H Ñ rk!s of the edges of H as follows. For every edge e P H,
let χpeq “ i if the edge e is σi-compatible with respect to J. Since for every edge e, there
exists a unique permutation that is compatible with respect to J, the auxiliary coloring χ
is well defined.

By the construction of pH,ăq and Theorem  4.2 , there exists a monochromatic copy
of pG,ăq with respect to χ. In particular, this implies that there exists τ P Sk such that
every edge of G is τ -compatible with respect to J. Since G is the disjoint union of Gσ

for σ P Sk ∖ tid, revu, we obtain by Claim  4.6 that τ P tid, revu. If τ “ id, then every edge
of G satisfies (a). Otherwise, if τ “ rev, then every edge of G satisfies (b). This concludes
the proof of the proposition. □

We are now ready to prove Lemma  4.1 .

Proof of Lemma  4.1 . Let t :“ cpP q and n :“ cpQq be the number of colors of P and Q.
Let m :“ epQq and enumerate the patterns of Q by Q “ tq1, . . . , qmu. We construct an
ordered graph pG,ăq on the vertex set r3ms with the natural order ă by taking G “

Ťm
j“1 Tj

as the vertex-disjoint union of triangles Tj, with vertex set

V pTjq “ t3j ´ 2, 3j ´ 1, 3ju,
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for 1 ď j ď m. We partition the edges of G into n edge-disjoint ordered graphs G “
Ťn
i“1 Gi

as follows. For each 1 ď j ď m, let qj “ paj, bj, cjq P Q be the j-th pattern of Q. We define
the subgraphs Gi on the vertex set r3ms by setting

EpGiq “
ď

jPrms:aj“i

tt3j ´ 2, 3j ´ 1uu Y
ď

jPrms:bj“i

tt3j ´ 2, 3juu Y
ď

jPrms:cj“i

tt3j ´ 1, 3juu .

(4.5)

Informally speaking, each triangle Tj corresponds to the j-th pattern of Q and the graph Gi

consists of all those pairs across all patterns which have the color i. It is easy to check
that the Gi’s are pairwise edge-disjoint and that G “

Ťn
i“1 Gi (e.g., see Figure  4.3 ).

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.3. An example of G for the palette Q “ tq1, q2, q3, q4u given by
q1 “ pblue, green, blueq, q2 “ pblue, red, redq, q3 “ pgreen, green, blueq and
q4 “ pred, blue, greenq. The graph G consists of m “ 4 triangles and it can
be partitioned into Gblue Y Ggreen Y Gred as shown in the picture.

We construct our desired 3-graph F p3q by applying Propositions  4.3 and  4.5 . Let pH,ăq

with H “
Ťn
i“1 Hi be the ordered graph obtained by applying Proposition  4.3 to the ordered

graph pG,ăq with G “
Ťn
i“1 Gi and t-colors. Set k :“ vpHq to be the number of vertices

of H and let pH,ăq be the linear k-graph obtained by Proposition  4.5 . We construct the
ordered graph pA,ăq with vertex set V pAq “ V pHq by replacing each edge e P H with a
copy pHe,ăq of pH,ăq. Since the k-graph H is linear, every two copies He and He1 in A

intersect in at most one vertex. This in particular implies that A “
Ťn
i“1 Ai is the union

of n edge-disjoint ordered graphs, where Ai “
Ť

ePH H
e
i . Finally, the 3-graph F :“ F p3q is

the hypergraph with vertex set V pF q “ V pAq and the edge set as follows. Let φ : A Ñ rns

be the map defined by setting φpeq “ i if and only if e P Ai. With this notation in mind,
the edge set of F is given by

F “

!

tx, y, zu P Ap3q : x ă y ă z, tx, yu, tx, zu, ty, zu P A

and pφpx, yq, φpx, zq, φpy, zqq P Q
)

. (4.6)

In other words, F is the 3-graph where the edges correspond to those triangles in A

whose color pattern is given by the palette Q. Note that the construction given by ( 4.6 )
immediately gives us that Q paints F . Indeed, just take the natural order ă of V pF q and
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consider the coloring χ : V pF qp2q Ñ rns given by

χpx, yq “

$

&

%

φpx, yq, if tx, yu P A,

1, otherwise.

We claim that P does not paint F . Suppose to the contrary that it does. Then there
exists a total ordering J of V pF q and a coloring χP : V pF qp2q Ñ rts such that

pχP px, yq, χP px, zq, χP px, zqq P P

for every tx, y, zu P F with x J y J z. Consider the restriction of χP to the edges
of A Ď V pF qp2q. By construction of A and Propositions  4.3 and  4.5 , there exists a copy
of pG,ăq with G “ G1 Y . . . Y Gn and vertex set X “ tx1, . . . , x3mu with x1 ă . . . ă x3m

such that

(i) For 1 ď i ď n, the graph Gi is monochromatic with respect to χP
(ii) Either x1 J . . . J x3m or x1 K . . . K x3m.

Note that by ( 4.6 ) and the definition of G, the induced graph F rXs is just a matching of
size m with edges tx3j´2, x3j´1, x3ju for 1 ď j ď m (see Figure  4.3 ). Let ψ : CpQq Ñ CpP q

be the map defined by

ψpiq “ χP pGiq,

i.e., ψpiq is the color of the monochromatic graph Gi. Claiming that this map gives a
homomorphism from Q to P or a homomorphism from Q to revpP q, we split the proof into
two cases.

Case 1: x1 J . . . J x3m.

For 1 ď j ď m, let qj “ paj, bj, cjq P Q be the j-th pattern of Q. By ( 4.5 ) we have
that φpx3j´2, x3j´1q “ aj, φpx3j´2, x3jq “ bj and φpx3j´1, x3jq “ cj. Since χP is a witness
that P paints F and we further have x3j´2 J x3j´1 J x3j and tx3j´2, x3j´1, x3ju P F , we
infer that

pψpajq, ψpbjq, ψpcjqq “ pχP px3j´2, x3j´1q, χP px3j´2, x3jq, χP px3j´1, x3jqq P P,

for 1 ď j ď m. This in particular implies that ψ is a homomorphism from Q to P , which
contradicts the assumption of the lemma.

Case 2: x1 K . . . K x3m.

Similarly as in Case 1, since P paints F and x3j J x3j´1 J x3j´2, we have that

pψpcjq, ψpbjq, ψpajqq “ pχP px3j´1, x3jq, χP px3j´2, x3jq, χP px3j´2, x3j´1qq P P,
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for 1 ď j ď m. This implies that ψpqjq “ pψpajq, ψpbjq, ψpcjqq P revpP q and hence ψ is a
homomorphism from Q to revpP q, which is again a contradiction. □

Remark 4.7. We observe that the same proof of Lemma  4.1 can be used to prove the
statement for a finite family of palettes tP1, . . . , Pku. That is, given a palette Q that is not
contained in a blow-up of Pi and revpPiq for 1 ď i ď k, then there exists a 3-graph F such
that Q paints F and none of the Pi’s paints F .

§5 Properties of blow-ups of palettes

In this section, we discuss properties of palettes contained in a blow-up of a given
palette P which will be necessary for the stability argument in Section  6 . We begin by
examining the interplay between P and revpP q. Let CpP q “ CprevpP qq “ rts. The first
observation is that since pa, b, cq P P if and only if pc, b, aq P revpP q, it follows that P
and revpP q have the same Lagrange polynomial and, consequently, the same Lagrangian.
Clearly, this still holds when inducing to any subset of colors.

Fact 5.1. ΛP rUs “ ΛrevpP qrUs for every U Ď rts.

It immediately follows that P is reduced if and only if revpP q is reduced. Another simple
observation is that if SP and SrevpP q are blow-ups of P and revpP q on the same set of
colors C and with the same partition structure C “

Ťt
i“1 Vi, then epSP q “ epSrevpP qq. In

particular, this implies that the maximum blow-up of P on n colors has the same number
of patterns as the maximum blow-up of revpP q on n colors (something we have already
used in the “in particular” part of Theorem  2.6 ).

The following observation shows that the Lagrangian of palettes is monotone with respect
to homomorphisms.

Observation 5.2. If Q and P are palettes and there is a homomorphism ψ : Q Ñ P , then

ΛQ ď ΛP .

Proof. Let x P ScpQq be a weighting of Q with λQpxq “ ΛQ. Then, for d P CpP q, define

yd “
ÿ

aPψ´1pdq

xa.



ON POSSIBLE UNIFORM TURÁN DENSITIES 21

Let y “ pydqdPCpP q and note that y P ScpP q because every a P CpQq is in the preimage of
exactly one d P CpP q. Since ψ is a homomorphism and x P ScpQq, it follows that

ΛP ě λP pyq “
ÿ

pd,e,fqPP

ydyeyf

“
ÿ

pd,e,fqPP

˜

ÿ

aPψ´1pdq

xa

¸˜

ÿ

bPψ´1peq

xb

¸˜

ÿ

cPψ´1pfq

xc

¸

ě
ÿ

pa,b,cqPQ

xaxbxc “ ΛQ.

This concludes the proof. □

Recall that a palette P is reduced if for every proper subpalette Q Ĺ P we have ΛQ ă ΛP .
We conclude our discussion on the interplay between P and revpP q by showing that if P is
reduced and P fl revpP q, then P is not contained in a blow-up of revpP q and revpP q is
not contained in a blow-up of P .

Proposition 5.3. Let P be reduced. If there is a homomorphism ψ : P Ñ revpP q, then
P – revpP q.

Proof. First, we check that ψ must be surjective. Indeed, if Impψq Ĺ CprevpP qq, then

ΛP ď ΛrevpP qrImpψqs “ ΛP rImpψqs ă ΛP ,

where the first inequality follows from Observation  5.2 , the equality follows from Fact  5.1 ,
and the final inequality follows from P being reduced. This is a contradiction, and
therefore ψ is surjective. Since P and revpP q have the same number of colors and patterns,
the surjective homomorphism ψ must be an isomorphism, concluding the proof. □

The next two results deal with properties of reduced palettes P . Roughly speaking,
the first one states that any palette Q which is contained in a blow-up of P and has
density dpQq “ epQq{cpQq3 very close to ΛP must have a positive proportion of colors in
each class of the partition structure.

Proposition 5.4. Given a reduced palette P with t colors, there are β “ β
 5.4 

ą 0
and ε “ ε

 5.4 

ą 0 such that the following holds. Suppose that Q is a palette that is contained
in a blow-up P 1 of P with partition structure CpP 1q “

Ťt
i“1 Vi and cpP 1q “ cpQq :“ n. If

in addition we have dpQq ě ΛP ´ ε, then |Vi| ě βn for every i P rts.

Proof. Suppose for the sake of contradiction, that the statement does not hold. Then, for
each integer m P N, there exist a blow-up P 1pmq of P with partition structure Cpmq :“
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CpP 1pmqq “
Ťt
i“1 V

pmq

i and a palette Qpmq Ď P 1pmq such that dpQpmqq ě ΛP ´ 1
m

and

|V
pmq

ipmq | ă
1
m
cpQpmq

q (5.1)

for some sequence of indices ipmq P rts. By applying the pigeonhole principle, we obtain
a subsequence (which we reindex using m again) such that ipmq is constant, say ipmq “ t.
Then, for each m P N, we have

ΛP rrt´1ss ě Λ
QpmqrCpmq∖V pmq

t s
ě dpQpmq

rCpmq ∖ V
pmq

t sq ě dpQpmq
q ´

1
m

ě ΛP ´
2
m
, (5.2)

where the first inequality follows from Observation  5.2 applied to P rrt´1ss and QpmqrCpmq∖
V

pmq

t s, the second inequality comes from ( 2.2 ), the third from (  5.1 ), and the fourth from the
choice of Qpmq. Since P is reduced, we must have ΛP rrt´1ss ă ΛP , which contradicts ( 5.2 )
for m large enough. □

Given a palette P and two (distinct) colors a, b P CpP q, we say that b dominates a
if, for every pattern p P P containing a, any substitution of the color a with the color b
results in a pattern p1 P P . As an example, suppose that 1, 2 P CpP q and 2 dominates 1.
Then p1, 1, xq P P implies that p1, 2, xq, p2, 1, xq, and p2, 2, xq are all in P . Although it is
straightforward to verify the following lemma, we include a proof for the convenience of
the reader.

Lemma 5.5. For a reduced palette P with CpP q “ rts there are no a, b P rts such that b
dominates a.

Proof. First note that we may assume that there is no c P rts with pc, c, cq P P . Other-
wise dpP rtcusq “ 1, whence P being induced would imply CpP q “ tcu, and we would be
done.

Now suppose, for the sake of contradiction, that there are a, b P rts such that b dominates a.
For z P St we can write

λP pzq “ zafapz1
q ` zbfbpz1

q ` z2
afa,apz1

q ` z2
bfb,bpz1

q ` zazbfa,bpz1
q ` gpz1

q

for some polynomials fa, fb, fa,a, fb,b, fa,b, and g in z1 “ pzcqcPrts∖ta,bu. Let x be an
optimal weighting of P witnessing λP pxq “ ΛP . The hypothesis that b dominates a implies
that fb ě fa, as well as fb,b ě fa,a, and 2fb,b ě fa,b, where the 2 appears since pa, b, xq

and pb, a, xq are both ‘covered’ by pb, b, xq. We claim that the weighting y P St given
by ya “ 0, yb “ xa ` xb, and yk “ xk for k P rts ∖ ta, bu satisfies

λP pyq ě λP pxq “ ΛP . (5.3)
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Indeed,

λP pyq “ pxa ` xbqfbpy1
q ` pxa ` xbq

2fb,bpy1
q ` gpy1

q

ě xafbpx1
q ` xbfbpx1

q ` x2
bfb,bpx1

q ` x2
afb,bpx1

q ` 2xaxbfb,bpx1
q ` gpx1

q

ě λP pxq ,

where y1 “ pycqcPrts∖ta,bu “ pxcqcPrts∖ta,bu “ x1. On the other hand, note that ya “ 0 and
therefore λP pyq ď ΛP rrts∖taus ă ΛP , where we use the fact that P is reduced in the last
inequality. This contradicts ( 5.3 ), which concludes the proof. □

We finish the section by introducing a concept used in [ 30 ] that will be important in
the stability argument. Let P be a palette with CpP q “ rts. A palette R contained in a
blow-up of P is rigid (with respect to P ) if there exists a partition of its colors CpRq “
Ťt
i“1 Ui satisfying the following: If R is contained in a blow-up S of P with partition

structure CpSq “
Ťt
i“1 Vi, then there exists an automorphism h : rts Ñ rts of P such

that Ui Ď Vhpiq for i P rts. In other words, a palette R is rigid if there is essentially a unique
way to embed it in a blow-up of P . The next result shows that if P is reduced, then rigid
palettes always exist for sufficiently many colors. Recall that a palette is non-degenerate if
every pattern has exactly 3 colors.

Lemma 5.6. Let P be a reduced palette with color set rts. Then there exists an integer
M :“ M

 5.6 

pP q and a rigid palette R Ď rM s3 with partition structure rM s “
Ťt
i“1 Ui such

that

piq R is non-degenerate.
piiq For i P rts, we have |Ui| ě 3t.

piiiq Any blow-up R1 of R on M ` 1 colors is rigid.

Moreover, if P fl revpP q, then the palette R is not contained in a blow-up of revpP q.

Proof. Since P is reduced, there exists a real number δ ą 0 such that ΛQ ă ΛP ´ δ for
every proper subset Q Ĺ P . Let ε, β be the constants given by Proposition  5.4 . We will
choose a sufficiently large M satisfying the following conditions:

(a) M " 1
ε
, 1
δ
, t, 1

β
.

(b) There exists a blow-up R̃ of P on M colors with partition structure CpR̃q “
Ťt
i“1 Ui

such that dpR̃q ą ΛP ´ mintδ{2, ε{2u.

Note that condition (b) can always be satisfied because of (  2.3 ). Let R be the palette
obtained by removing every degenerate edge from R̃. It is not difficult to see from conditions
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(a) and (b) that

dpRq ě
epR̃q ´ 3M2

M3 ě dpR̃q ´ 3{M ě ΛP ´ mintδ, εu. (5.4)

We claim that the palette R is a rigid palette satisfying properties (i), (ii), and (iii).
We first check properties (i) and (ii). Property (i) follows immediately from the construc-

tion since we deleted all degenerate edges from R̃. To see that property (ii) holds, note that
by (  5.4 ), we have dpRq ě ΛP ´ ε. Hence, Proposition  5.4 gives us that |Ui| ě βM ě 3t,
where the last inequality holds due to our choice of M (condition (a)).

We now proceed to prove that R is rigid. Clearly, R is contained in a blow-up of P
(namely R̃). Let S be a blow-up of P with partition structure CpSq “

Ťt
j“1 Vj and let

ψ : CpRq Ñ CpSq be an embedding (i.e., an injective homomorphism) of R into S. We
define a mapping h : rts Ñ rts by letting hpiq be an arbitrary index in rts such that

|ψpUiq X Vhpiq| ě 3

for i P rts. Such a choice of h always exists because |Ui| ě 3t for i P rts. Let Yi Ď Ui be the
preimage of ψpUiq X Vhpiq under ψ, i.e., the subset of Ui with ψpYiq Ď Vhpiq. Our goal is to
prove that h : rts Ñ rts is an automorphism of P and that ψpUiq Ď Vhpiq for every i P rts

(that is, Yi “ Ui). We will do that in several claims.

Claim 5.7. The map h is a homomorphism from P to P .

Proof. Note that if pi1, i2, i3q P P , then there is a pattern pa, b, cq P Yi1 ˆ Yi2 ˆ Yi3 in R.
Indeed, by definition, R contains all the non-degenerate patterns in Ui1 ˆ Ui2 ˆ Ui3 .
And since |Yi| “ |ψpUiq X Vhpiq| ě 3 for all i P rts, even if i1 “ i2 “ i3, there is
some non-degenerate pattern in Yi1 ˆ Yi2 ˆ Yi3 . However, since ψ is a homomorphism,
the pattern pψpaq, ψpbq, ψpcqq P Vhpi1q ˆ Vhpi2q ˆ Vhpi3q is a pattern of S. This implies
that phpi1q, hpi2q, hpi3qq P P and consequently, h : P Ñ P is a homomorphism. □

Claim 5.8. The homomorphism h : rts Ñ rts of P is bijective.

Proof. We construct an auxiliary blow-up Sh of P with partition structure CpShq “
Ťt
j“1 V

h
j

defined by

V h
j “

ď

iPh´1pjq

ψpUiq.

That is, the sets V h
j are the union of the images of Ui such that hpiq “ j. It is clear that

CpShq Ď CpSq. Moreover, note that some of the sets V h
i might be empty.

We claim that the map ψ : CpRq Ñ CpShq is an embedding ofR into Sh such that ψpUiq Ď

V h
hpiq. The latter part holds by definition. To see that it is an embedding, let pa, b, cq P Ui1 ˆ
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Ui2 ˆUi3 be a pattern of R. Then pi1, i2, i3q P P and hence, since h is a homomorphism, we
have that phpi1q, hpi2q, hpi3qq P P . This implies that pψpaq, ψpbq, ψpcqq P V h

hpi1qˆV
h
hpi2qˆV

h
hpi3q

is a pattern of Sh and ψ : R Ñ Sh is an embedding.
Suppose, for the sake of contradiction, that h is not bijective. Then there exists an

index j P rts such that V h
j “ ∅. This implies that there exists a homomorphism φ : R Ñ

P rrts ∖ tjus. Hence, by ( 2.2 ), Observation  5.2 , and the definition of δ, we have

dpRq ď ΛR ď ΛP rrts∖tjus ă ΛP ´ δ,

which contradicts ( 5.4 ). □

The last two claims show that h : rts Ñ rts is an automorphism of P . Suppose, without
loss of generality, that hpiq “ i (and henceforth we index both Ui and Vi by i P rts).

Claim 5.9. For all i P rts we have ψpUiq Ď Vi.

Proof. Suppose to the contrary that there exist indices i, j and a color x P Ui such
that ψpxq P Vj. We claim that j dominates i in P . Let p P P be a pattern containing the
color i. Suppose, without loss of generality, that p is of the form p “ pi, k, ℓq, where k, ℓ P rts

(k and ℓ might be equal to i or j). Then we can choose distinct b P Yk and c P Yℓ (which
are also both distinct from x) and so the triple px, b, cq P Ui ˆ Yk ˆ Yℓ is a pattern of R.
This implies that pψpxq, ψpbq, ψpcqq P Vj ˆVk ˆVℓ is a pattern of S. Hence, by construction,
we have pj, k, ℓq P P . That is, by substituting the color i with the color j, we still have a
pattern of P . However, since P is reduced, by Lemma  5.5 there are no pairs ti, ju with j

dominating i, which yields a contradiction. □

Claims  5.7 – 5.9 show that R is a rigid configuration. Next we prove that R satisfies
property (iii). First observe that the above argument verifying the rigidity of R used only
properties (i) and (ii) of Lemma  5.6 and (  5.4 ). Thus, it is sufficient to check these for any
palette R1 on M ` 1 colors obtained by taking a blow-up of R. Viewing R1 as a blow-up
of P , it has partition structure CpR1q “

Ťt
i“1 V

1
i , where |Vi| ď |V 1

i | ď |Vi| ` 1 for all i P rts

and so R1 inherits properties (i) and (ii) from R. Moreover, by our choice of M in condition
(a), we have

dpR1
q ě

epR̃q ´ 3M2

pM ` 1q3 ě pdpR̃q ´ 3{Mq
M3

pM ` 1q3 ě ΛP ´ mintδ, εu.

Thus, by the same proof, the palette R1 is rigid.
Finally, to prove the moreover part, suppose that P fl revpP q and that there exists a

homomorphism φ : R Ñ revpP q. Let CpRq “
Ťt
i“1 Wi be the partition structure of R as a
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subpalette of a blow-up of revpP q, i.e., Wi “ φ´1piq. We construct a map ξ : rts Ñ rts by
letting ξpiq be an index such that

|Ui X Wξpiq| ě 3.

Such an index always exists since |Ui| ě 3t. For i P rts let Zi “ Ui XWξpiq. We claim that ξ
is a homomorphism from P to revpP q. Let pi1, i2, i3q P P be a pattern. Since R is obtained
by deleting just the non-degenerate edges of a blow-up of P and |Zi1 |, |Zi2 |, |Zi3 | ě 3, there
exists a pattern pa, b, cq P Zi1 ˆZi2 ˆZi3 . This implies that pa, b, cq P Wξpi1q ˆWξpi2q ˆWξpi3q

and consequently pξpi1q, ξpi2q, ξpi3qq P revpP q. Hence, ξ : P Ñ revpP q is a homomorphism.
A contradiction now follows from Proposition  5.3 and the fact that P is reduced. This
concludes the proof of Lemma  5.6 . □

§6 Stability argument

The main goal of this section is to provide a proof of Theorem  2.6 . We remark that
our approach is very similar to the approach in [  30 ], but adapted to our needs. We begin
with an outline of the proof. For a reduced palette P Ď rts3 with t colors, define the
family FpP q of unpaintable 3-graphs as follows:

FpP q :“ tF : F is a 3-graph and P is F -deficientu . (6.1)

The first observation is that if Q is an FpP q-deficient palette, then Q is contained in a
blow-up of P or in a blow-up of revpP q (see Lemma  4.1 ). Unfortunately, the family FpP q

might be infinite in size and hence cannot be used directly as a witness for Theorem  2.6 . To
circumvent this issue, we choose an appropriate integer M and truncate the family FpP q

to the subfamily FpP qM of 3-graphs with at most M vertices, i.e.,

FpP qM :“ tF P FpP q : vpF q ď Mu . (6.2)

Let Q be an FpP qM -deficient palette that maximizes the number of patterns among
all FpP qM -deficient palettes; in other words, suppose that Q P EXpalpn,FpP qMq. An
application of the removal lemma for palettes (see Lemma  3.3 ) implies that Q is very close
to a blow-up of P or a blow-up of revpP q (see Corollary  6.1 below). We then complete the
proof using a stability argument, showing that any extremal palette sufficiently close to a
blow-up of P must actually be a blow-up of P (see Lemma  6.2 ). Now let us proceed with
the details.

We remind the reader that given two palettes P and Q on n colors, the edit dis-
tance |P△Q| “ |P ∖Q| ` |Q∖P | is the minimum number of patterns that must be deleted
or added to transform P into Q. Moreover, we say that P is α-close to Q if |P△Q| ď αn3.

The following is a corollary of Lemmata  3.3 and  4.1 .
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Corollary 6.1. Given a palette P and α ą 0, there exist M “ M
 6.1 

, N “ N
 6.1 

P N such
that the following holds for every palette Q on n ě N colors. If Q is FpP qM -deficient, then
it is α-close to being contained in a blow-up of P or a blow-up of revpP q.

Proof. Given α ą 0, apply Lemma  3.3 to the family FpP q to obtain M,N P N and β ą 0.
The conclusion of Lemma  3.3 entails that for every FpP qM -deficient palette Q with cpQq “

n ě N , there exists an α-close palette Q1 that does not paint FpP q. Suppose for the sake of
contradiction that Q1 is not contained in a blow-up of P or revpP q. Then Lemma  4.1 yields
a 3-graph F painted by Q1 but not by P . In particular, F P FpP q, a contradiction. □

The next lemma is the key technical result of this section. We prove it using a stability
argument similar to the one in [ 30 ].

Lemma 6.2. Let P be a reduced palette with CpP q “ rts. There are N :“ N
 6.2 

pP q P N,
M :“ M

 6.2 

pP q P N and α :“ α
 6.2 

pP q ą 0 such that for all integers n ě N and m ě M , the
following holds. If Q P EXpalpn,FpP qmq and Q is α

2 -close to a blow-up of P , then Q is a
blow-up of P .

Proof. Let M1 “ M
 5.6 

be the integer obtained from Lemma  5.6 , and ε “ ε
 5.4 

, β “ β
 5.4 

ą 0
be the constants given by Proposition  5.4 . Set α and γ as real numbers such that

α “ mintpβ{4q
2M2

1 , ε{3u and γ “ pβ{4q
2M1 . (6.3)

Consider the family of palettes R given by

R :“ tR : cpRq ď M1 ` 3 and

R is neither contained in a blow-up of P nor in a blow-up of revpP qu .

For every R P R, by Lemma  4.1 , there exists a 3-graph FR such that R paints FR and P

does not paint FR (i.e., FR P FpP q). Let M2 :“ maxRPRtvpFRqu. Such an M2 always exists
since R is a finite family. We will show that the statement of the lemma holds for M2 as M
and N P N large enough. Fix integers n ě N and m ě M2. An immediate consequence of
our choice is the following:

If Q does not paint FmpP q, then Q is R-free. (6.4)

Given n P N, let S be a blow-up of P with partition structure rns “
Ťt
i“1 Vi, i.e.,

S “ tpx, y, zq P Vi ˆ Vj ˆ Vk : pi, j, kq P P u .

Given any such S we can define the set of missing patterns A and the set of bad patterns B
of Q (with respect to S) by

A :“ S ∖Q and B :“ Q∖ S , (6.5)
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i.e., the patterns from S missing in Q and the patterns in Q that are not in our target
blow-up S. Let Q P EXpalpn,FM2pP qq be a maximum palette that does not paint FM2pP q

and is α
2 -close to a blow-up S Ď rns3 of P . Since |Q△S| ď α

2n
3, we have |A| ` |B| ď α

2n
3.

Moreover, because S is a blow-up of P , it does not paint FMpP q. Therefore, by the
maximality of Q, we have that |A| ď |B| ď α

2n
3.

It will be useful later to compare P not to S but instead to some blow-up S 1 of P with n
colors that minimizes |B| among all blow-ups of P with n colors. Fortunately, we can still
check that such S 1 is not too far from Q. Indeed, if there exists a blow-up S 1 with partition
structure rns “

Ťt
i“1 V

1
i such that the missing patterns B1 “ Q∖S 1 of Q with respect to S 1

satisfy |B1| ă |B|, then by the maximality of Q, we have |Q△S 1| “ |A1|`|B1| ă 2|B| ď αn3.
Hence, at the marginal cost of a slightly larger edit distance, we can replace S by S 1 and
assume that the partition rns “

Ťt
i“1 Vi minimizes the number of bad patterns. To ease

the notation, we write S and A and B instead of S 1, A1, and B1. In particular, we now
have |Q△S| “ |A| ` |B| ď αn3 and

|A| ď |B| ď αn3 . (6.6)

Finally, note that by the maximality of Q, there exists some N so that we have
dpQq ě ΛP ´ α whenever cpQq “ n ě N (since such density can be achieved by a
maximal blow-up of P on n colors). This implies by ( 6.3 ) that dpSq ě ΛP ´ 3α ě ΛP ´ ε.
Hence, by Proposition  5.4 , we have

|Vi| ě βn (6.7)

for i P rts.
We claim that |A| “ |B| “ 0. Suppose, to the contrary, that |B| ą 0. Given a

color x P rns, let degBpxq be the number of patterns in B containing x (note that we do not
count multiplicities, i.e., the pattern px, x, yq counts only once). We define the maximum
degree ∆pBq as the maximum of degBpxq over x P rns. We will first show that the palette
of bad patterns B does not have a large maximum degree.

Claim 6.3. ∆pBq ď γn2.

Proof. Suppose that ∆pBq ą γn2 and let x P rns such that degBpxq ą γn2. Suppose,
without loss of generality, that x P V1. For every k P rts, we define a set Bpkq

x as follows.
Let Bp1q :“ B. For k ‰ 1, consider the partition rns “

Ťt
i“1 V

pkq

i with V
pkq

i “ Vi

for i R t1, ku, and V
pkq

1 “ V1 ∖ txu as well as V pkq

k “ Vk Y txu. That is, rns “
Ťt
i“1 V

pkq

i is
the partition obtained by moving the color x from V1 to Vk. Let Spkq be the blow-up of P
with this partition structure, and let Bpkq “ Q∖ Spkq be the new set of bad patterns of Q
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with respect to Spkq. Now we define

Bpkq
x :“ tq P Bpkq : x P qu

for k P rts. Recall that we chose S to minimize the number |B| “ |Q∖ S|, so we have that
|B| ď |Bpkq| for k P rts. Since |Bpkq| ´ |B| “ |Bpkq

x | ´ |Bp1q
x |, we obtain that

|Bpkq
x | ě |Bp1q

x | “ degBpxq ą γn2 . (6.8)

for k P rts.
Let R‹ be the non-degenerate rigid palette on M1 colors obtained by Lemma  5.6 with

partition rM1s “
Ťt
i“1 Ui. For each t-tuple X “ pp1, . . . , ptq P

śt
k“1 B

pkq
x of patterns, we

define a palette RX
‹ on M1 ` 1 colors as follows. Let X “ tp1, . . . , ptu be the palette

containing the t elements of X. Setting Wi “ Vi X pCpXq ∖ txuq, we have the parti-
tioning CpXq “

`
Ťt
i“1 Wi

˘

Y txu. Consider an injective map ι : CpXq Ñ rM1 ` 1s such
that ιpWiq Ď Ui and ιpxq “ M1 ` 1. Such an embedding is always possible since |Ui| ě 3t
for i P rts (Property (ii) of Lemma  5.6 ) and |Wi| ď 3t. Let ιpXq be the palette with patterns
given by ιppq for every p P X. The palette RX

‹ is defined as the union RX
‹ “ R‹ Y ιpXq.

Subclaim 6.4. RX
‹ P R.

Proof. Clearly, cpRX
‹ q ď M1 ` 3. We claim that RX

‹ is neither contained in a blow-up
of P nor in a blow-up of revpP q. First, note that it suffices to check the claim only for P .
Indeed, by Lemma  5.6 , if P fl revpP q, then the palette R‹ is not contained in a blow-up
of revpP q. Since R‹ Ď RX

‹ , this in particular implies that RX
‹ is not contained in a blow-up

of revpP q.
Now suppose for the sake of contradiction that RX

‹ is contained in a blow-up S 1 of P
with partition structure

Ťt
i“1 V

1
i . In particular, R‹ Ď S 1, and by the definition of rigidity,

there exists some automorphism h : rts Ñ rts of P with Ui Ď V 1
hpiq for all i P rts. We may

assume without loss of generality that hpiq “ i, i.e., that Ui Ď V 1
i for i P rts. Suppose that

the last color M1 ` 1 of RX
‹ is contained in V 1

k for some index k P rts. Let pk be the k-th
pattern of X. From the fact that ιpxq “ M1 ` 1 P V 1

k and Ui Ď V 1
i , we obtain that the

patterns pk and ιppkq respect the same underlying structure in the blow-ups Spkq and S 1

of P , respectively. That is, pk P V pkq
a ˆV

pkq

b ˆV pkq
c if and only if ιppkq P V 1

a ˆV 1
b ˆV 1

c . Since
we assumed that RX

‹ Ď S 1, we have that in particular ιppkq P S 1. This implies that pk P Spkq,
which is a contradiction since pk P Bpkq

x “ Q∖ Spkq. Therefore, RX
‹ is not contained in a

blow-up of P . □

Our goal now is to lower bound the cardinality of the set A “ S ∖ Q to obtain a
contradiction. We say that an (injective) embedding f : RX

‹ Ñ QYS is good if fpM1`1q “ x
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and fpιppkqq “ pk for k P rts. That is, if f embeds ιpXq into X. Fix a pair pf,Xq

where f is a good embedding. By Subclaim  6.4 and ( 6.4 ), we obtain that fpRX
‹ q Ę Q.

Therefore, fpRX
‹ q X A ‰ ∅, i.e., there exists a pattern in fpRX

‹ q that is a missing pattern.
Let ξpf,Xq be such a pattern. Since X Ď Q, RX

‹ “ R‹ Y ιpXq, and f embeds ιpXq into X
we must have that ξpf,Xq P fpR‹q and so in particular x R ξpf,Xq. By property (i) of
Lemma  5.6 , this implies that ξpf,Xq is a non-degenerate pattern (i.e., it has three distinct
colors). For this reason, we will only estimate the number of non-degenerate missing
patterns not containing x.

For i P rts, let cipXq be the number of distinct colors of Ui present in the patterns of
ιpXq, and let cpXq “

řt
i“1 cipXq. Note that cpXq ď 2t since each of the t patterns in X

contains x. For a fixed X P
śt

k“1 B
pkq
x , the number of good embeddings f is at least

the number of ways to select, for each i P rts, p|Ui| ´ cipXqq vertices from Vi ∖ tX X Viu.
Therefore, for N large enough, the number of distinct pairs pf,Xq can be lower bounded by

ÿ

XP
śt

k“1 B
pkq
x

t
ź

i“1

ˆ

|Vi|

2

˙|Ui|´cipXq

ě
ÿ

XP
śt

k“1 B
pkq
x

ˆ

βn

2

˙M1´cpXq

ě

ˆ

βn

2

˙M1´2t t
ź

k“1
|Bpkq

x | ě γtnM1

ˆ

β

2

˙M1´2t

, (6.9)

where we use ( 6.7 ) and ( 6.8 ). Moreover, for a fixed non-degenerate missing pattern p not
containing x, the number of pairs pf,Xq such that p P fpRX

‹ q is at most nM1´3 (since the
pattern p and the vertex x are fixed). Therefore, the number of missing patterns can be
estimated by

|A| ě γtn3
ˆ

β

2

˙M1´2t

ą αn3

by our choice of α and γ in ( 6.3 ). However, this contradicts ( 6.6 ), which concludes the
proof. □

By applying a similar argument as in the last claim, one can obtain the following.

Claim 6.5. For every bad pattern qB P B, there exist at least pβ{4qM1n2 non-degenerate
missing patterns qA P A such that |CpqAq X CpqBq| “ 1.

Proof. Fix qB “ pa, b, cq P B. Let χ : CpqBq Ñ rts be the t-coloring such that qB P

Vχpaq ˆ Vχpbq ˆ Vχpcq. Let R‹ be the non-degenerate rigid palette on M1 colors obtained by
Lemma  5.6 with partition rM1s “

Ťt
i“1 Ui. We define the palette RqB

‹ Ď rM1 ` cpqBqs3

as follows. Let CpqBq “ tx1, . . . , xcpqBqu (note that cpqBq can be either 2 or 3, and
that ta, b, cu “ tx1, . . . , xcpqBqu as sets). For 1 ď k ď cpqBq, let Rk be a palette with
color set rM1s Y tM1 ` ku obtained from R‹ by blowing up a color in the set Uχpxkq



ON POSSIBLE UNIFORM TURÁN DENSITIES 31

to form the new vertex M1 ` k. Let pB P tM1 ` 1, . . . ,M1 ` cpqBqu3 be the pattern
obtained by sending each color xk in the pattern qB to the color M1 ` k. Then we
define RqB

‹ :“
´

ŤcpqBq

k“1 Rk

¯

Y tpBu and remark that in this construction the only pattern
in RqB

‹ which meets tM ` 1, . . . ,M ` cpqBqu in more than one color is pB.

Subclaim 6.6. RqB
‹ P R.

Proof. As in the proof of Subclaim  6.4 , it suffices to check that RqB
‹ is not contained

in a blow-up of P . Suppose, for the sake of contradiction, that RqB
‹ is contained in a

blow-up S 1 of P with partition structure
Ťt
i“1 V

1
i . This in particular implies that R‹ Ď S 1

and Rk Ď S 1 for each 1 ď k ď cpqBq. By the rigidity of R‹, we may assume without
loss of generality that Ui Ď V 1

i for i P rts. Moreover, by property (iii) of Lemma  5.6 , we
also obtain that M1 ` k P V 1

χpxkq. Thus, and since qB P Vχpaq ˆ Vχpbq ˆ Vχpcq, we obtain
that pB P V 1

χpaq ˆ V 1
χpbq ˆ V 1

χpcq. This implies that pχpaq, χpbq, χpcqq P P , which contradicts
the fact that qB P B is a bad pattern. □

Our goal now is to lower bound the cardinality of the missing patterns A “ S ∖Q. We
define the subsets A0, A1 Ď A as

A0 :“ tqA P A : cpqAq “ 3, CpqAq X CpqBq “ ∅u ,

A1 :“ tqA P A : cpqAq “ 3, |CpqAq X CpqBq| “ 1u .

That is, A0 consists of the non-degenerate missing patterns that are disjoint from qB,
and A1 consists of those that intersect qB in exactly one color. We say that an embedding
f : RqB

‹ Ñ Q Y S is good if f sends pB to qB. Let Ψ be the set of all good embeddings f .
Fix f P Ψ. By Subclaim  6.6 and ( 6.4 ), we obtain that fpRqB

‹ q Ę Q. Therefore, fpRqB
‹ q must

contain a missing pattern ξpfq P A. Since qB P B, we obtain that ξpfq P fpRqB
‹ ∖ tpBuq.

By recalling that the only pattern in RqB
‹ which meets CppBq in more than one color is pB,

this implies that ξpfq P A0 Y A1. Using (i) and (iii) of Lemma  5.6 , the number of good
embeddings f can be lower bounded by

|Ψ| ě

t
ź

i“1

ˆ

|Vi|

2

˙|Ui|

ě

ˆ

βn

2

˙M1

,

where we use ( 6.7 ). We can split the argument into two cases:

Case 1: For at least |Ψ|{2 embeddings f , the pattern ξpfq is in A0.

For a pattern qA P A0, the number of f P Ψ such that qA P fpRqB
‹ q is at most nM1´3.

Therefore,

|A| ě |A0| ě
|Ψ|

2nM1´3 ě
n3

2

ˆ

β

2

˙M1

ą αn3,
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by our choice of α in ( 6.3 ). However, this contradicts ( 6.6 ).

Case 2: For at least |Ψ|{2 embeddings f , the pattern ξpfq is in A1.

For a pattern qA P A1, the number of f P Ψ such that qA P fpRqB
‹ q is at most nM1´2

(since |CpqAq X CpqBq| “ 1 and cpqAq “ 3). Therefore,

|A1| ě
|Ψ|

2nM1´2 ě
n2

2

ˆ

β

2

˙M1

ą

ˆ

β

4

˙M1

n2 .

This concludes the proof of the claim. □

To finish the proof, we double count the number of pairs pqA, qBq where qB P B is a bad
pattern and qA P A is a non-degenerate missing pattern such that |CpqAq X CpqBq| “ 1.
Fix qB P B. By Claim  6.5 , there exist at least pβ{4qM1n2 patterns qA. Therefore, there are
at least pβ{4qM1n2|B| such pairs pqA, qBq. On the other hand, for a fixed qA P A, there are
at most 3∆pBq patterns qB such that |CpqAq X CpqBq| “ 1. Consequently, by Claim  6.3 ,
the number of pairs pqA, qBq is at most 3γn2|A|. Combining the two bounds yields, by
( 6.3 ), that

|A| ě
pβ{4qM1

3γ |B| ą |B|,

which contradicts ( 6.6 ). Therefore |A| “ |B| “ 0 and consequently Q “ S, concluding the
proof of the lemma. □

We are now able to prove Theorem  2.6 as described in the outline at the beginning of
the section.

Proof of Theorem  2.6 . We start by setting up the constants. Let MP
 6.2 

, NP
 6.2 

, αP
 6.2 

and
M

revpP q

 6.2 

, N revpP q

 6.2 

, αrevpP q

 6.2 

be the constants obtained by applying Lemma  6.2 to the palettes P
and revpP q, respectively (Lemma  6.2 applies to revpP q because, as remarked in Section  5 , it
is reduced if and only if P is). LetM

 6.1 

andN
 6.1 

be the constants obtained by applying Corol-
lary  6.1 to the palette P with α “ 1

2 mintαP
 6.2 

, α
revpP q

 6.2 

u. Set N0 :“ maxtNP
 6.2 

, N
revpP q

 6.2 

, N
 6.1 

u.
Consider the family of palettes R given by

R :“ tR : R is a palette with cpRq ď N0

and R is not contained in a blow-up of P nor in a blow-up of revpP qu .

For every R P R, by Lemma  4.1 , there exists a 3-graph FR such that R paints FR and P

does not paint FR. Let M4 :“ max
RPR

tvpFRqu and note that this is well-defined since R is
finite. Since tFRuRPR Ď FpP q and by our choice of M4, every palette in R paints a 3-graph
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in FpP qM4 . In other words, we have that

if Q is FM4pP q-deficient, then Q is R-free. (6.10)

Set M :“ maxtMP
 6.2 

,M
revpP q

 6.2 

,M
 6.1 

,M4u. We claim that the family H :“ FpP qM satisfies
the hypothesis of the theorem.

Let n P N and let Q P EXpalpn,Hq be a palette with cpQq “ n that maximizes the
number of patterns among all H-deficient palettes. Suppose first that n ď N0. By ( 6.10 ),
the palette Q is R-free, and then the definition of R and cpQq ď N0 entail that Q is
contained in a blow-up of P or in a blow-up of revpP q and so Q is among the palettes
which are considered in the right-hand side of ( 2.4 ). Hence, we may assume that n ě N0.
Now, Corollary  6.1 implies that Q is α-close to being contained in a blow-up of P of revpP q.
Therefore, by Lemma  6.2 , Q is a blow-up of P or revpP q. □

§7 Proof of main theorem

In this section we prove Theorem  1.1 . As mentioned before, it essentially follows from
Theorem  2.6 and the fact that πpalpFq “ π pFq holds for finite families. This equality
in turn follows from the work in [  31 ] (which is implicit in [ 34 ]) and [ 24 ]. To expand on
this argument, we recall the notion of reduced hypergraphs from [ 34 ]. Essentially, reduced
hypergraphs capture the setting that one arrives at after applying hypergraph regularity.

Definition 7.1. A reduced 3-graph is a triple A “ pI, tP ijuijPIp2q , tA ijkuijkPIp3qq consisting
of a finite index set I, a collection of pairwise disjoint sets of vertices tP ijuijPIp2q , and a
collection of 3-partite 3-graphs tA ijkuijkPIpijkq such that for every ijk P Ip3q the vertex
classes of A ijk are P ij, P ik, and Pjk. If d P r0, 1s and epA ijkq ě d|P ij||P ik||Pjk| holds for
all ijk P Ip3q, we say that A is pd, q-dense.

To ease the notation, we often simply write a reduced 3-graph as A “ pI,P ij,Aijkq. By
the hypergraph embedding lemma, in order to find a copy of a 3-graph F in the original
host 3-graph H, it is sufficient to find a “reduced map” of F to a suitable reduced 3-graph.
This is made formal with the following definition.

Definition 7.2. A reduced map from a 3-graph F to a reduced 3-graph A “ pI,P ij,Aijkq

is a pair pλ, φq such that

(i ) λ : V pF q ÝÑ I and φ : BF ÝÑ
Ť

ijPIp2q P ij , where BF denotes the set of all pairs of
vertices covered by an edge of F ;

(ii ) if uv P BF , then λpuq ‰ λpvq and φpuvq P Pλpuqλpvq;
(iii ) if uvw P EpF q, then φpuvqφpuwqφpvwq P EpA λpuqλpvqλpwqq.
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If some such reduced map exists, we say that A contains a reduced image of F , and
otherwise A is called F -free.

Given a family F of 3-graphs we say that a reduced 3-graph A is F -free if it is F -free
for all F P F . One can now define the Turán density of a family of 3-graphs with respect
to reduced 3-graphs.

Definition 7.3. If F is a family of 3-graphs, then

πrd
pFq “ sup

␣

d P r0, 1s : For every m P N there is a pd, q-dense,

F -free, reduced 3-graph with an index set of size m
(

.

The key behind almost all the progress on the uniform Turán problem in the past decade
is that an argument based on the hypergraph regularity method yields the following result.

Theorem 7.4 (Theorem 3.3 in [  31 ], implicit in [ 34 ]). If F is a finite family of 3-graphs,
then

πrd
pFq “ π pFq.

For the next lemma, we need to set up the following notation. Let A “ pU,P ij,A ijkq

be a reduced 3-graph and let S ij Ď P ij be multisets, for all ij P U p2q. For all ij P U p2q,
set pS ijq1 “ tpx, rq : x P S ij, r P rℓpxqsu, where ℓpxq is the multiplicity of x in S ij. Next,
for all ijk P U p3q, let pA ijkq1 be the 3-partite 3-graph with vertex classes pS ijq1, pS ikq1,
and pSjkq1 and edge set

tpx, aqpy, bqpz, cq : xyz P A ijk, a P rℓpxqs, b P rℓpyqs, c P rℓpzqsu .

The following was a crucial technical lemma used in [ 24 ], to obtain a palette from a
reduced 3-graph with the appropriate dependence on ε and m.

Lemma 7.5. For all ε ą 0 there is some s P N such that for all m P N there is
some N P N with the following property. Every reduced 3-graph A “ prN s,P ij,A ijkq with
density d P r0, 1s contains an index subset U Ď rN s with |U | ě m and multisets S ij Ď P ij,
for all ij P U p2q, such that each |S ij| “ s and the reduced 3-graph pU, pS ijq1, pA ijkq1q

is pd ´ ε, q-dense.

By applying Theorem  7.4 , the following theorem suffices to complete the proof of
Theorem  1.1 .

Theorem 7.6. Let P be a palette. Then there exists a finite family H of 3-graphs so
that πrdpHq “ ΛP .
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Proof. If P is not reduced, there exists a reduced palette P 1 Ĺ P with ΛP 1 “ ΛP that we
could consider instead, so we may assume that P is reduced. Then Theorem  2.6 yields a
finite family H such that P is H-deficient and for all n P N

expalpn,Hq “ maxtepQq : Q is a blow-up of P and cpQq “ nu . (7.1)

We will show that for every ε ą 0 we have ΛP ´ ε ď πrdpHq ď ΛP ` 2ε. So let ε ą 0
be given. First we show that ΛP ´ ε ď πrdpHq. By ( 2.3 ), there is some n0 such that for
every n P N with n ě n0 there is a palette Q with n colors which is a blow-up of P , attains
the maximum on the right-hand side in ( 7.1 ), and satisfies epQq

n3 ě ΛP ´ ε. Now it follows
from ( 2.2 ), Fact  2.3 , and Theorem  7.4 that

ΛP ´ ε ď
epQq

n3 ď ΛQ ď π pHq “ πrd
pHq .

Next we show that πrdpHq ´ 2ε ď ΛP . First we observe that for all s P N we have
expalps,Hq

s3 ď ΛP . (7.2)

Indeed, by ( 7.1 ) and ( 2.2 ), there is a blow-up of Q with cpQq “ s such that expalps,Hq{s3 “

dpQq ď ΛQ. Since Q is a blow-up of P , Observation  5.2 entails that ΛQ ď ΛP , and ( 7.2 )
follows.

Now let m be the maximum number of vertices of any H P H and let s P N be
given by applying Lemma  7.5 with ε. Next, let R be the Ramsey number R3pm; 2s3

q

(i.e., R is the smallest integer such that any coloring of the 3-edges of Kp3q

R with 2s3

colors contains a monochromatic Kp3q
m ). Finally, let N P N be as guaranteed by (the

conclusion of) Lemma  7.5 applied to R here instead of m there. Let A “ prN s,P ij,A ijkq

be a pπrdpHq´ε, q-dense H-free reduced 3-graph. The conclusion of Lemma  7.5 provides an
index subset U Ď rN s with |U | ě R and multisets S ij Ď P ij with |S ij| “ s, for all ij P U p2q,
such that the reduced 3-graph pU, pS ijq1, pA ijkq1q is pπrdpHq ´ 2ε, q-dense. For all ij P U p2q

we identify pS ijq1 (arbitrarily) with rss. Then each pA ijkq1 can be viewed as one of the s3

possible subsets of rss3. This yields a 2s3-coloring of U p3q, whence our choice of R provides
an index set U 1 Ď U with |U 1| “ m and a subset G Ď rss3 so that for each ijk P pU 1qp3q

with i ă j ă k, pA ijkq1 corresponds to G (under the fixed identifications of Sij, Sik,
and Sjk with rss). Now G can naturally be interpreted as a palette G1 with CpG1q “ rss

and EpG1q “ G. Since eppA ijkq1q ě pπrdpHq ´ 2εqs3, it follows that dpG1q ě πrdpHq ´ 2ε.
Further, it can easily be checked that if G1 paints any H P H, this would entail a reduced
image of H in pU, pS ijq1, pA ijkq1q and thus in A . Hence, A being H-free, we know that G1

is H-deficient. Therefore, using (  7.2 ), we get

πrd
pHq ´ 2ε ď

epG1q

s3 ď
expalps,Hq

s3 ď ΛP .
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This concludes the proof of the theorem. □

§8 Concluding remarks

In this work, we obtain that the Lagrangian of any finite palette is attained as the
uniform Turán density of a finite family of 3-graphs. A consequence of this result combined
with [  24 ] is that

Λpal Ď Π ,fin Ď Π ,8 Ď sΛpal . (8.1)

It would be interesting to determine which of these inclusions are strict. In addition, if Π
denotes the set of uniform Turán densities of single 3-graphs, is it true that Π , Ĺ Π ,fin Ĺ

Π ,8? In [  30 ], it was proved that the set of Turán densities of possibly infinite families
of k-graphs, Πpkq

8 is uncountable and closed for k ě 3. One could ask whether similar
statements hold for Π ,8. We remark that a direct application of the methods used in [ 30 ]
does not seem to work here.

We say that d P r0, 1q is a jump in a set X Ď r0, 1s if there exists some ε ą 0 such that
pd, d ` εq X X “ ∅. Erdős [ 14 ] showed that for every k ě 2, 0 is a jump in Πpkq

8 . On
the other hand, Frankl and Rödl [  15 ] proved that for every k ě 3 there is some d P r0, 1q

that is not a jump in Πpkq
8 , disproving the famous Erdős jumping conjecture. For the

uniform Turán density, Reiher, Rödl and Schacht [  34 ] showed that 0 is a jump for Π ,8.
A consequence of our work is that every non-jump in Πp3q

8 yields a non-jump in Π ,fin

(see [  21 ]).
Note that the palettes considered here, as well as in [ 21 ] and [ 24 ], have finitely many

colors. One might ask what the situation looks like for a (countably) infinite palette,
which is a pair P “ pC,Eq consisting of an infinite set of colors C and an infinite set of
patterns E Ď C3.

To define the Lagrangian of an infinite palette, note that the Lagrangian of a (finite)
hypergraph F is (up to scaling) simply the maximum edge density a blow-up of F can have.
Following this spirit, a reasonable way to define the “Lagrangian” of an infinite palette P is

ΛP “ suptd P r0, 1s : for every η ą 0 and n P N, there is

a pd, ηq-dense 3-graph H with vpHq ě n such that P paints Hu .

From [ 21 ] it follows that for finite palettes this definition is equivalent to our previous
definition. Now one can ask whether Theorem  1.1 still holds for every infinite palette P .
Lamaison and Wu [ 25 ] announced that there exists a 3-graph F such that there is no
finite palette P that is F -deficient and satisfies ΛP “ π pF q. Note that this means
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that Π ,fin Ĺ Λpal. Setting Λpal,8 “ tΛP : P is a finite or infinite paletteu, it would be
curious if in fact any of the sets Λpal,8, Π ,fin, and Π ,8 are equal.

References

[1] F. G. Abramson and L. A. Harrington, Models without indiscernibles, J. Symbolic Logic 43 (1978),
no. 3, 572–600. MR 503795 Ò 4 

[2] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, Efficient testing of large graphs, Combinatorica
20 (2000), no. 4, 451–476. Ò 2 ,  3 ,  A ,  A 

[3] N. Alon and A. Shapira, Every monotone graph property is testable, Proceedings of the thirty-seventh
annual acm symposium on theory of computing, 2005, pp. 128–137. Ò 3 

[4] N. Alon and J. H Spencer, The probabilistic method, 4th ed., Wiley Series in Discrete Mathematics
and Optimization, John Wiley & Sons, Nashville, TN, 2016 (en). Ò A 

[5] C. Avart, V. Rödl, and M. Schacht, Every monotone 3-graph property is testable, SIAM Journal on
Discrete Mathematics 21 (2007), no. 1, 73–92. Ò 3 

[6] V. Bhat, J. Nešetřil, C. Reiher, and V. Rödl, A Ramsey class for Steiner systems, J. Combin. Theory
Ser. A 154 (2018), 323–349. MR 3718069 Ò 4 

[7] W. G. Brown and M. Simonovits, Digraph extremal problems, hypergraph extremal problems, and the
densities of graph structures, Discret. Math. 48 (1984), 147–162. Ò 1 

[8] P. Erdős and A. Hajnal, On Ramsey like theorems. Problems and results, Combinatorics (Proc. Conf.
Combinatorial Math., Math. Inst., Oxford, 1972), 1972, pp. 123–140. MR 337636 Ò 2 

[9] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966),
51–57. MR  205876 Ò 1 

[10] P. Erdős and V. T. Sós, On Ramsey-Turán type theorems for hypergraphs, Combinatorica 2 (1982),
no. 3, 289–295. MR 698654 Ò 1 

[11] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946),
1087–1091. MR  18807 Ò 1 

[12] P. Erdős, Problems and results on graphs and hypergraphs: similarities and differences (1990), 12–28.
MR 1083590 Ò 1 

[13] P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463–470.
MR 1556929 Ò 4 

[14] P. Erdös, On extremal problems of graphs and generalized graphs, Israel Journal of Mathematics 2
(1964), no. 3, 183–190. Ò 8 

[15] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984), 149–159. Ò 1 ,  8 

[16] F. Garbe, D. Iľkovič, D. Kráľ, F. Kučerák, and A. Lamaison, Hypergraphs with uniform Turán density
equal to 8/27 (2024), available at  arXiv:2407.05829 . Ò 1 

[17] F. Garbe, D. Král’, and A. Lamaison, Hypergraphs with minimum positive uniform Turán density,
Israel J. Math. 259 (2024), no. 2, 701–726. MR  4732978 Ò 1 

[18] R. Glebov, D. Král’, and J. Volec, A problem of Erdős and Sós on 3-graphs, Israel J. Math. 211
(2016), no. 1, 349–366. MR 3474967 Ò 1 ,  1 

[19] G. Katona, T. Nemetz, and M. Simonovits, On a problem of Turán in the theory of graphs, Mat.
Lapok 15 (1964), 228–238 (Hungarian, with English and Russian summaries). MR 172263 Ò 1 

http://www.ams.org/mathscinet-getitem?mr=503795
http://www.ams.org/mathscinet-getitem?mr=3718069
http://www.ams.org/mathscinet-getitem?mr=337636
http://www.ams.org/mathscinet-getitem?mr=205876
http://www.ams.org/mathscinet-getitem?mr=698654
http://www.ams.org/mathscinet-getitem?mr=18807
http://www.ams.org/mathscinet-getitem?mr=1083590
http://www.ams.org/mathscinet-getitem?mr=1556929
http://arxiv.org/abs/2407.05829
http://www.ams.org/mathscinet-getitem?mr=4732978
http://www.ams.org/mathscinet-getitem?mr=3474967
http://www.ams.org/mathscinet-getitem?mr=172263


38 D. KING, S. PIGA, M. SALES, AND B. SCHÜLKE

[20] P. Keevash, Hypergraph Turán problems (2011), 83–139. MR 2866732 Ò 1 

[21] D. King, M. Sales, and B. Schülke, Lagrangians are attained as uniform Turán densities (2024). Ò 1 ,  1 ,
 8 

[22] Y. Kohayakawa, B. Nagle, V. Rödl, and M. Schacht, Weak hypergraph regularity and linear hypergraphs,
Journal of Combinatorial Theory, Series B 100 (2010), no. 2, 151–160. Ò 3.9 

[23] D. Král’, F. Kučerák, A. Lamaison, and G. Tardos, Uniform Turán density—palette classification. In
preparation. Ò 1 

[24] A. Lamaison, Palettes determine uniform Turán density (2024). Ò 1 ,  2 ,  2 ,  4 ,  7 ,  7 ,  8 ,  8 

[25] A. Lamaison and Z. Wu, Relating the Turán density and the uniform Turán density of hypergraphs. In
preparation. Ò 8 

[26] , The uniform Turán density of large stars (2024), available at  arXiv:2409.03699 . Ò 1 

[27] T. S. Motzkin and E. G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canadian
J. Math. 17 (1965), 533–540. MR 0175813 Ò 1 

[28] J. Nešetřil and V. Rödl, Strong Ramsey theorems for Steiner systems, Trans. Amer. Math. Soc. 303
(1987), no. 1, 183–192. MR 896015 Ò 1 ,  4 ,  4.2 

[29] , The partite construction and Ramsey set systems, 1989, pp. 327–334. Graph theory and
combinatorics (Cambridge, 1988). MR 1001405 Ò 4 

[30] O. Pikhurko, On possible Turán densities, Israel Journal of Mathematics 201 (201204). Ò 1 ,  2 ,  5 ,  6 ,  6 ,  8 

[31] Chr. Reiher, Extremal problems in uniformly dense hypergraphs, European J. Combin. 88 (2020),
103117, 22. MR 4111729 Ò 1 ,  2 ,  2 ,  2 ,  7 ,  7.4 

[32] C. Reiher, V. Rödl, and M. Schacht, Hypergraphs with vanishing Turán density in uniformly dense
hypergraphs, J. Lond. Math. Soc. (2) 97 (2018), no. 1, 77–97. MR  3764068 Ò 1 

[33] C. Reiher and V. Rödl, The girth ramsey theorem (2023). Ò 4 

[34] Chr. Reiher, V. Rödl, and M. Schacht, On a Turán problem in weakly quasirandom 3-uniform
hypergraphs, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 5, 1139–1159. MR  3790065 Ò 1 ,  1 ,  7 ,  7.4 ,  8 

[35] V. Rödl, On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1986), no. 1-2,
125–134. MR  837962 Ò 2 

[36] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452
(Hungarian, with German summary). MR 18405 Ò 1 

Appendix A. Weak Palette Regularity

Before we begin with details we provide a brief overview. Our proof of Theorem  3.7 will
be as expected. We will define an energy function q which takes as argument a partition
of CpQq and returns an element of r0, 1s, and show both that refining a partition cannot
decrease the value of q, and that if A fails to be ε-regular then there exists a refinement
which substantially increases q. Once we have proven Theorem  3.7 , Corollary  3.8 will be
obtained through the following intermediary result.

Theorem A.1. For all non-increasing Eprq : N Ñ p0, 1s and m there exists M “ M
 A.1 

, N “

N
 A.1 

so that given any palette Q with cpQq ě N there is an equipartition A “ tVi : i P rtsu

of CpQq with refinement B “ tVi,j : i P rts, j P rℓsu so that:
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(1 ) m ď t and tℓ ď M ,
(2 ) all but Ep0qt3 of pi1, i2, i3q P rts3 have the ordered triple pVi1 , Vi2 , Vi3q Ep0q-regular,
(3 ) for all pi1, i2, i3q P rts3, all but Eptqℓ3 of pj1, j2, j3q P rℓs3 have the ordered triple

pVi1,j1 , Vi2,j2 , Vi3,j3q Eptq-regular, and
(4 ) for all but Ep0qt3 of pi1, i2, i3q P rts3, all but Ep0qℓ3 of pj1, j2, j3q P rℓs3 have

|dpVi1,j1 , Vi2,j2 , Vi3,j3q ´ dpVi1 , Vi2 , Vi3q| ă Ep0q.

The relationship between our Theorem  3.7 , Corollary  3.8 , and Theorem  A.1 is entirely
analogous to those found in [ 2 ] between Lemma 3.3 (the traditional Szemerédi graph
regularity lemma), Lemma 4.1, and Corollary 4.2 there. Our proofs use the same strategies.

Let us begin now with the details of Theorem  3.7 . We follow closely the probabilistic
techniques presented in [ 4 ], working here with palettes in place of graphs. For ease of
notation we will still refer to colors as vertices, and patterns as edges on these vertices.
We are interested in partitions of CpQq, and we let n “ cpQq throughout. We will,
in intermediate steps, allow our equipartitions to include a small set V0 of exceptional
vertices. As part of a partition of CpQq we consider V0 as composed of singleton vertices,
so that B “ U0 Ÿ U1 Ÿ . . . Ÿ Ut1 refines A “ V0 Ÿ V1 Ÿ . . . Ÿ Vt (denoted B ă A) so long as,
for each i P rts, Vi is obtained exactly as the union of some Uj together with some vertices
from U0, and V0 Ď U0. Recalling Definition  3.4 , we say that a partition A “ V0ŸV1Ÿ. . .ŸVt

is ε-regular if for all but εt3 of pi1, i2, i3q P rts3, the ordered triple pVi1 , Vi2 , Vi3q is ε-regular.
When we index over V P A for a partition A, we mean to take one term for each part of A,
denoted V . With these notions in mind we can now define the energy q.

Definition A.2. Suppose that V1, V2, V3 Ď CpQq with cpQq “ n. Then

qpV1, V2, V3q :“ |V1||V2||V3|

n3 d2
pV1, V2, V3q .

If A1,A2,A3 are partitions of CpQq, we set

qpA1,A2,A3q :“
ÿ

V1PA1,V2PA2,V3PA3

qpV1, V2, V3q .

We will use qpAq to refer to qpA,A,Aq along a single partition.

Since qpV1, V2, V3q ď
|V1||V2||V3|

n3 it is immediate that qpA1,A2,A3q P r0, 1s. The following
technical lemma captures two more important properties we will require of the function q.

Lemma A.3. If B1 ă A1,B2 ă A2, and B3 ă A3 then qpB1,B2,B3q ě qpA1,A2,A3q.
Furthermore, if V1, V2, V3 Ď CpQq are so that pV1, V2, V3q is not ε-regular, then there are
partitions V1 “ V 1

1 Ÿ V 2
1 , V2 “ V 1

2 Ÿ V 2
2 , V3 “ V 1

3 Ÿ V 2
3 so that

qpV 1
1 Ÿ V 2

1 , V
1

2 Ÿ V 2
2 , V

1
3 Ÿ V 2

3 q ě qpV1, V2, V3q ` ε5 |V1||V2||V3|

n3 .
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Proof. For the first part, it suffices to check the case when A1 “ V1,A2 “ V2,A3 “ V3

consist of a single set each, since any Bi can be obtained by successive refinement in this way.
In this case we define a random variable Z as follows. Select vertices x1 P V1, x2 P V2, x3 P V3

uniformly at random and let U1 P B1, U2 P B2, U3 P B3 be the unique parts of their respective
partitions so that x1 P U1, x2 P U2, x3 P U3 before setting Z “ dpU1, U2, U3q. We can directly
compute both the expectation

EpZq “
ÿ

U1PB1,U2PB2,U3PB3

|U1||U2||U3|

|V1||V2||V3|
dpU1, U2, U3q

“
ÿ

U1PB1,U2PB2,U3PB3

epU1, U2, U3q

|V1||V2||V3|

“ dpV1, V2, V3q

and the second moment

EpZ2
q “

ÿ

U1PB1,U2PB2,U3PB3

|U1||U2||U3|

|V1||V2||V3|
d2

pU1, U2, U3q

“
n3

|V1||V2||V3|

ÿ

U1PB1,U2PB2,U3PB3

|U1||U2||U3|

n3 d2
pU1, U2, U3q

“
n3

|V1||V2||V3|
qpB1,B2,B3q .

Combining these yields

0 ď VarpZq “ EpZ2
q ´ EpZq

2
“

n3

|V1||V2||V3|

ˆ

qpB1,B2,B3q ´ qpV1, V2, V3q

˙

as needed.
Now we proceed to the ‘furthermore’ part. Let V 1

i be witness sets to the failure
of ε-regularity and V 2

i their complements, so that |V 1
i | ě ε|Vi| but |dpV 1

1 , V
1

2 , V
1

3 q ´

dpV1, V2, V3q| ě ε. Let Z be the random variable defined above on the new partition
obtained of V1, V2, V3, where Bi “ V 1

i Ÿ V 2
i . Then Chebyshev’s inequality shows

ε3
ď

|V 1
1 ||V 1

2 ||V 1
3 |

|V1||V2||V3|
ď Prp|Z ´ EpZq| ě εq ď

VarpZq

ε2

and we are done, having computed VarpZq above. □

The furthermore part of the previous lemma shows that irregular triples can be refined to
increase the value of q by a small amount. Next we will show that if A has many irregular
triples, by refining each we can increment q by a small constant depending only on ε, while
still controlling the order of the partitions we create.
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Lemma A.4. Suppose A is an equipartition of CpQq into V0 Ÿ V1 . . . Ÿ Vt and t ě 6.
If there are εt3 many pi1, i2, i3q P rts3 with the ordered triple pVi1 , Vi2 , Vi3q failing to be ε-
regular and |V0| ď εn,then there exists a refinement B “ U0 ŸU1 . . . ŸUℓ of A with qpBq ě

qpAq ` ε6

16 , |U0| ď |V0| ` n
2t and ℓ ď 2t23t22t.

Proof. Any time that Vi appears as part of an irregular triple (in first, second, or third
position) with distinct indices, we will apply Lemma  A.3 to partition Vi into V 1

i and V 2
i .

Formally, for every i P rts and pi1, i2, i3q P rts3 with i P ti1, i2, i3u and i1, i2, i3 all distinct,
we define a partition Vpiq

pi1,i2,i3q
of Vi. If pVi1 , Vi2 , Vi3q is ε-regular we let Vpiq

pi1,i2,i3q
be the trivial

partition consisting of the single set Vi, and if pVi1 , Vi2 , Vi3q is not ε-regular we let Vpiq
pi1,i2,i3q

be the partition furnished by Lemma  A.3 . Each Vpiq
pi1,i2,i3q

consists of either 1 or 2 sets, so
for fixed i the mutual refinement consists of at most 23t2 parts. Let B̃ be the partition
obtained by mutually refining each Vi in this manner, so that (since there at least εt3

irregular triples and at most ε3t2 ď ε
2t

3 of them have a repeated index)

qpB̃q ě qpAq `
ε

2t
3ε5 1

8t3 .

At this point B̃ has incremented q as desired; all that remains is to balance the sizes of
the member sets. B̃ has at most t23t2 parts, say Ũj, together with the exceptional set V0

remaining from A. Let B be obtained from B̃ by taking, from each Ũj, a maximal disjoint
family of sets of size n

t23t2 2t
, say Uj,k for 0 ď k ď Kj, and adding all of the leftover vertices

to V0 to form U0. Formally,

U0 “ V0 Ÿ

˜

ď

j

Ũj ∖

˜

ď

1ďkďKj

Uj,k

¸¸

.

The first part of Lemma  A.3 gives qpBq ě qpB̃q ě qpAq ` ε6

16 . Overcounting the number of
vertices discarded gives |U0| ď |V0| ` n

2t , and flattening pairs pj, kq to a single index ℓ gives
an equipartition B with at most 2t23t22tmembers, as needed. □

Finally, the following lemma will be used to redistribute the exceptional set V0 amongst
the other classes of the equipartition without destroying regularity.

Lemma A.5. For all ε ą 0 there exists γ ą 0 so that the following holds. Suppose
that pV1, V2, V3q is ε-regular in CpQq and that X1, X2, X3 Ď CpQq with |Xi| ď γ|Vi|.
Then pV1 Y X1, V2 Y X2, V3 Y X3q is 2ε-regular.

Proof. We may assume that γ ă ε; we will verify directly that pV1 YX1, V2 YX2, V3 YX3q

is 2ε-regular. Suppose that Wi Ď pVi YXiq with |Wi| ě 2ε|Vi YXi|, and set W V
i :“ Wi XVi
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with leftovers WX
i :“ Wi ∖W V

i . Then |W V
i | ě |Wi| ´ γ|Vi| ě ε|Vi|, so by the ε-regularity

of pV1, V2, V3q it follows that

|dpW V
1 ,W

V
2 ,W

V
3 q ´ dpV1, V2, V3q| ď ε .

Next observe the simple subset

epV1, V2, V3q ď epV1 Y X1, V2 Y X2, V3 Y X3q

and union bounds

epV1 Y X1, V2 Y X2, V3 Y X3q ď epV1, V2, V3q ` |X1||V2 Y X2||V3 Y X3|

` |V1 Y X1||X2||V3 Y X3|

` |V1 Y X1||V2 Y X2||X3| .

Dividing through by |V1 Y X1||V2 Y X2||V3 Y X3| yields
1

p1 ` γq3dpV1, V2, V3q ď dpV1 Y X1, V2 Y X2, V3 Y X3q ď dpV1, V2, V3q ` 3γ

and repeating the same argument with W V
i in place of Vi and WX

i in place of Xi gives
1

p1 `
γ
ε
q3dpW V

1 ,W
V
2 ,W

V
3 q ď dpW1,W2,W3q ď dpW V

1 ,W
V
2 ,W

V
3 q ` 3γ

ε
.

Then for γ taken small enough as a function of ε, it follows that

|dpV1, V2, V3q ´ dpV1 Y X1, V2 Y X2, V3 Y X3q| ď ε{2

and
|dpW1,W2,W3q ´ dpW V

1 ,W
V
2 ,W

V
3 q| ď ε{2 .

Finally the triangle inequality shows

|dpW1,W2,W3q ´ dpV1 Y X1, V2 Y X2, V3 Y X3q| ď 2ε

as needed. □

Proof of Theorem  3.7 . We directly prove the ‘more generally’ part of the Theorem, which
implies the first part by taking an arbitrary equipartition of m parts. Let γ be the result
of Lemma  A.5 applied to ε. By increasing the value of m we may assume that

P16
ε6

T 1
2m ď

min pε, γ{4q and m ě 6 - this suffices for the general case. Inductively define a sequence t0 “

2m and ti`1 “ 2ti23t2i 2ti . We will show that taking M “ N “ tr 16
ε6 s suffices.

Indeed, let A0 be the initial equipartition with s0 “ m parts and V 0
0 “ ∅. Iterate

the following process, beginning with i “ 0. If Ai is not ε-regular, apply Lemma  A.4 to
obtain a refinement Ai`1 with qpAi`1q ě qpAiq ` ε6

16 , so that |V i`1
0 | ď |V i

0 | ` n
2si

and Ai`1

has si`1 ď ti`1 parts (since the inductive definition of ti matches the output of Lemma  A.4 ).
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Since qp¨q P r0, 1s, it follows that in
P16
ε6

T

steps we must find some Aj which is ε-regular,
with s ď M parts, at which point our iterative process halts.

We can estimate the size of the exceptional set as

|V j
0 | ď n

ˆR

16
ε6

V

1
2m

˙

ď εn .

All that remains is to redistribute V j
0 amongst the other parts of the equipartition. By

evenly distributing the vertices of V j
0 no part will receive more than 2 |V j

0 |

s
ď γ many vertices

with 2 |V j
0 |{s

|Vi|
ď γ so that Lemma  A.5 guarantees the 2ε-regularity of our equipartition.

Applying the above proof to ε1 “ ε
2 would provide ε-regularity; we leave the proof as

written for readability. □

Next we show, as done in [ 2 ], how to iterate Theorem  3.7 and then randomize to obtain
Corollary  3.8 . To do so we will require another property of q. If B ă A it follows from
Lemma  A.3 that qpBq ě qpAq; we will show that if qpBq remains very close to qpAq, then
most of the densities d found across parts of B are very close to those found in A.

Lemma A.6. Suppose equipartitions A “ tVi : i P rtsu and refinement B “ tVi,j :
i P rks, j P rℓsu have qpBq ´ qpAq ď ε4{64. Then for all but εt3 pi1, i2, i3q P rts3, all
but εℓ3 pj1, j2, j3q P rℓs3 have |dpVi1 , Vi2 , Vi3q ´ dpVi1,j1 , Vi2,j2 , Vi3,j3q| ď ε.

Proof. First fix pi1, i2, i3q P rts3 and let Z be the random variable defined in Lemma  A.3 , over
the refinement given by B of the sets Vi1 , Vi2 , Vi3 . If Lpi1,i2,i3q Ď rℓs3 are those pj1, j2, j3q P rℓs3

with |dpVi1 , Vi2 , Vi3q ´ dpVi1,j1 , Vi2,j2 , Vi3,j3q| ě ε, and |Lpi1,i2,i3q| ě εℓ3, then

εℓ3
ˆ

1
2ℓ

˙3

ď
ÿ

pj1,j2,j3qPLpi1,i2,i3q

|Vi1,j1 ||Vi2,j3 ||Vi3,j3 |

|Vi1 ||Vi2 ||Vi3 |
ď Prp|Z ´ EpZq| ě εq ď

VarpZq

ε2

and therefore, recalling we calculated VarpZq in Lemma  A.3 ,

qp
ď

¨

j1Prℓs

Vi1,j1 ,
ď

¨

j2Prℓs

Vi2,j2 ,
ď

¨

j3Prℓs

Vi3,j3q ´ qpVi1 , Vi2 , Vi3q ě
ε3

8
|Vi1 ||Vi2 ||Vi3 |

n3 .

Next define I Ď rts3 as those pi1, i2, i3q P t3 for which |Lpi1,i2,i3q| ě εℓ3 and suppose for
contradiction that |I| ą εt3. Then

qpBq ´ qpAq ě
ÿ

pi1,i2,i3qPI

qp
ď

¨

j1Prℓs

Vi1,j1 ,
ď

¨

j2Prℓs

Vi2,j2 ,
ď

¨

j3Prℓs

Vi3,j3q ´ qpVi1 , Vi2 , Vi3q

ą εt3
ε3

8
|Vi1 ||Vi2 ||Vi3 |

n3 ě
ε4

64
a contradiction. □

We can now iterate  3.7 to prove Theorem  A.1 .
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Proof of Theorem  A.1 . Given any m P N and ε ą 0, let M
 3.7 

pm, εq and N
 3.7 

pm, εq denote
the output of Theorem  3.7 . Let E and m be as in the Theorem statement, and let ε “ Ep0q.
Set M0 “ M

 3.7 

pm, εq and N0 “ N
 3.7 

pm, εq before inductively defining

Mi “ M
 3.7 

ˆ

Mi´1,
EpMi´1q

M3
i´1

˙

Ni “ N
 3.7 

ˆ

Mi´1,
EpMi´1q

M3
i´1

˙

.

If we set s “
P64
ε4

T

` 1, then we claim that M “ Ms, N “ Ns suffices.
First let A0 be an ε-regular equipartition of order t0 P rm,M0s, provided by Theorem  3.7 

and then perform the following iterative procedure, starting with i “ 0 (where t´1 “

0 for convenience). Given Ai with order ti P rti´1,Mis we may apply Theorem  3.7 

again to obtain a refinement Ai`1 which is EpMiq

M3
i

-regular with order ti`1 P rti,Mi`1s. In
particular, at most EpMi´1q

M3
i´1

t3i of pi1, i2, i3q P rtis
3 have pVi1 , Vi2 , Vi3q fail to be EpMi´1q-regular,

since EpMi´1q

M3
i´1

ď EpMi´1q. Let i be the first i so that qpAiq´qpAi´1q ď ε4

64 , and set A “ Ai´1

and B “ Ai, with t “ ti´1 and tℓ “ ti. It remains to check items  (1 ) - (4 ) .
Part  (1 ) follows immediately by recalling that the ti are increasing, so m ď t0 ď

t ď tℓ ď M . Part  (2 ) also follows immediately using the monotonicity of E , since all
but p

EpMi´2q

M3
i´2

qrti´1s3 ď Ep0qrti´1s3 of pi1, i2, i3q P rti´1s3 have pVi1Vi2 , Vi3q as Ep0q-regular. For
Part  (3 ) , we have that the partition B has at most EpMi´1q

M3
i´1

ptℓq3 pairs ppi1, i2, i3q, pj1, j2, j3qq P

prts3, rℓs3q with pVi1,j1 , Vi2,j2 , Vi3,j3q failing to be EpMi´1q-regular. Since EpMi´1q

M3
i´1

ptℓq3 ď

EpMi´1qℓ3, there is certainly no pi1, i2, i3q P rts3 with more than Eptqℓ3 many pj1, j2, j3q P rℓs3

with pVi1,j1 , Vi2,j2 , Vi3,j3q failing to be EpMtq-regular. Finally, Part  (4 ) follows by direct
application of Lemma  A.6 .

□

Finally we may sample from the refinement B of A to find the model vertex sets we
require.

Proof of Corollary  3.8 . We apply Theorem  A.1 with E 1prq “ mintEprq, 1
4t3 ,

ε
8u and m to

obtain M
 A.1 

and N
 A.1 

and claim that M “ M
 A.1 

, N “ N
 A.1 

, and δ “ 1
2M suffices. To that

end, let Q be any palette with at least N colors, so that Theorem  A.1 gives B refining A so
that Parts  (1 ) - (4 ) hold. For each i P rts select ji P rℓs, independently uniformly at random,
and set Ui “ Vi,ji . We now show that parts  (i ) - (iv ) are satisfied with positive probability.
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Parts  (i ) and  (ii ) are immediate and always hold. For Part  (iii ) ,

P
`

pUi1 , Ui2 , Ui3q is not ε-regular for some pi1, i2, i3q P rts3˘
ď t3E 1

ptq ď
1
4

by applying the union bound and Part  (3 ) of Theorem  A.1 . Meanwhile,

Ep|pi1, i2, i3q P rts3 with |dpUi1 , Ui2 , Ui3q ´ dpVi1 , Vi2 , Vi3q| ě ε|q ď
ε

8t
3

`
ε

8t
3

by Part  (4 ) of  A.1 , and therefore the probability that there are more than εt3 pi1, i2, i3q P rts3

with |dpUi1 , Ui2 , Ui3q´dpVi1 , Vi2 , Vi3q| ě ε cannot exceed 1
4 . Then with probability at least 1

2

both Part  (iii ) and  (iv ) are satisfied as well, so there exists such a choice of Ui and we are
done. □
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