ON POSSIBLE UNIFORM TURAN DENSITIES
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ABSTRACT. Given a family of 3-graphs F, the uniform Turdn density m.(F) is defined as
the infimum d € [0, 1] for which any sufficiently large uniformly d-dense 3-graph — that is,
a 3-graph which has edge-density at least d on all linearly sized subsets — contains a copy
of some F' € F. Let Il 5, denote the set of all possible uniform Turdn densities of finite
families. Erd6s, Hajnal, and R6dl introduced a family of constructions for lower bounds
on uniform Turan densities called palette constructions. We show that 1I. s, contains
every d that is obtained as the uniform density of an optimized palette construction. A
corollary of this is that II. s, contains the set of Lagrangians of 3-graphs and includes
irrational numbers. Our work complements a recent result of Lamaison, which states that

every value in Il 5, can be approximated by uniform densities of palette constructions.

§1 INTRODUCTION

For n € IN and a family F of k-uniform hypergraphs (or k-graphs), let the extremal
number ex(n, F) be the maximum number of edges in a k-graph G on n vertices that does
not contain a copy of any F' € F. Such a k-graph G is called F-free. It is well known
that the quantity ex(n, F)/(}) is decreasing [19], and therefore one may define the Turdn
density of a family F as

7(F) = lim eX((Z)f)
k
When the family F = {F} is a single k-graph, we usually denote 7 (F) by 7(F). Let 1
be the set of all possible Turan densities of families of k-graphs and let Hg;) be the set of
Turan densities of finite families F.

The study of Turdn densities was initiated by Turén [36], who determined ex(n, F)
when F' is the complete (2-)graph. Erdés, Stone, and Simonovits [9,11], generalised this by
establishing that
X(F) -2
X(F) -1
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where x(F) is the chromatic number of F'. Their proof also gives that

k
nggung;:{m: ke]N;o}.

For higher uniformities, the problem becomes considerably harder and, despite much
effort, remains wide open even for 3-graphs. Determining the Turan density even for
seemingly “simple” 3-graphs is notoriously difficult. Perhaps the most famous open
problem is finding the Turan density of the complete 3-graph on four vertices, K f’) In
fact, even 7(K. i ), the Turdn density of the 3-graph with four vertices and three edges, is
unknown.

A different line of research investigates properties of the set of Turan densities. Disproving
a 1000$ conjecture by Erdés, Frankl and Rodl [15] showed that for & > 3 the set 1
is not well-ordered, i.e., there exists some « € [0,1) such that for every ¢ > 0, the
set (a, a0 +¢€) N Hg.f) is not empty. This indicates how much more difficult the hypergraph
Turén problem is for k-graphs with & > 3. Recently, Pikhurko [30] proved a series of results

concerning 1% and Hgfl). In particular, he showed that ) Hf(in, ¥ is uncountable,

and, using a result by Brown and Simonovits [7], that e = Hﬁn. However, the full

description of the sets IT%) and Hf(i];)

remains open. For more on the hypergraph Turan
problem, we refer to the survey by Keevash [20)].

Here we consider a variant of the Turdn density suggested by Erdés and Sés [10, 12].
Throughout the rest of the paper, we focus on 3-graphs. For d € [0, 1] and n > 0, we say

that a 3-graph H on n vertices is (d, n)-dense if for all X < V(H), we have

e(X) = d(’?) —nn?.

The uniform Turdn density 7. of a family F of 3-graphs is defined as

7., (F) = sup{d € [0, 1] : for every n > 0 and n € IN, there exists
an F-free, (d,n)-dense 3-graph H with |V (H)| = n}.

In other words, 7. (F) is the smallest d € [0, 1] such that there is some n > 0 such that
every sufficiently large 3-graph H on n vertices that is (d + o(1),n)-dense contains a copy
of some F e F.

Erdés and Sos specifically asked to determine 7. (K 4 ) and 7 (K 4 ). Similarly as with
the original Turdn density, these problems turned out to be very difficult. Only recently,
Glebov, Kral’, and Volec [18] and Reiher, Rédl, and Schacht [34] independently solved the
latter, showing that 7. (K @) ") = 1/4, which confirmed a conjecture by Erdés and Sés. We
refer to Reiher’s survey [31] for a full description of the landscape of extremal problems in

uniformly dense hypergraphs.
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Similarly as for the original Turan density, let II. ,, be the set of all possible uniform
Turdn densities of families and II. 5, the set of all possible uniform Turdn densities of
finite families. In order to state and discuss the main result of this paper, we need to
introduce the concept of Lagrange polynomials, which go back to the work of Motzkin
and Straus [27]. Given n € IN and a subset of ordered triples (which will later be called a
“palette”) P < [n]?, we define the Lagrange polynomial of P as

/\P($17-~;$n): 2 LTk

(i,j,k)EP
and the Lagrangian of P, denoted as Ap, as the maximum of Ap(xy,...,x,) subject
tox; +...+x, =1 and z; € [0,1] for all i € [n]. Let Apa be the set of all possible Ap.
In [21], it was shown that Ay, < I1. ,, and, as a corollary, that the set II. 5, is not well-
ordered and contains irrational numbers. However, the families constructed in the proof
were all infinite, which does not shed light on the possible values of II. s,. Here we extend
the result in [21] by showing that Ay < 1L gn.

Theorem 1.1. For all A € Ay, there is a finite family F of 3-graphs with m.(F) = A.

Until recently, the only known members of I1. s, were 0,1/27,4/27,1/4, and 8/27 [16-18,
32,34]. Recently, two infinite families of uniform Turdn densities were obtained: one
converging to 1/2 [24] and another being the uniform Turdn densities of large stars [26].
All of these densities are rational numbers. A corollary of Theorem 1.1 is that there exist
irrational uniform Turdn densities of finite families (e.g., see Observation 6.1, [21]).

Interestingly, one of the core steps (Lemma 4.1) in our proof is about structural Ramsey
theory. The proof of this key lemma relies on the partite construction method of Nesetril
and Rodl [28], and for this reason the bounds on the graphs in F are enormous. A
generalization of the aforementioned lemma was obtained independently by Kral, Kucerak,

Lamaison, and Tardos [23].

§2 PALETTES

In this section, we present the main technical result of this paper. To do so, we first

define the notion of a palette.

Definition 2.1. A palette is a pair P = (C, E) consisting of a set of colors C' and a set of
patterns £ < C3.

Although this definition is very similar to that of ordered 3-graphs, note that a palette
may contain degenerate patterns, i.e., patterns that contain fewer than three colors. We
denote the set of colors of a palette P by C'(P), while P should be understood as the set of
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patterns F(P). Let ¢(P) and e(P) be the number of colors and the number of patterns of P,
respectively, and let d(P) := e(P)/c(P)? be its density. Note that for p € P, {p} can be
viewed as a palette itself and as usual we omit the parentheses when writing C'(p) etc. We
say that P is non-degenerate if every pattern of P is non-degenerate, i.e., for every p € P, it
holds that ¢(p) = 3. Given a subset U < C(P) of colors, let P[U] be the induced subpalette
on U. That is, the palette with C'(P[U]) = U and P[U] :={pe P: C(p) < U}.

Given two palettes P and @, a (palette) homomorphism from P to @ isamap ¢ : C(P) —
C(Q) such that for every pattern p = (¢, ¢2,¢3) € P, we have ¥(p) = (¢¥(¢1),%(c2),1¥(c3)) €
Q). As with hypergraphs, we usually do not distinguish between isomorphic palettes. If
there is an injective homomorphism from P to (), we also say that P is contained in @)
(or that P is a subpalette of @), denoted by P < Q. We say that a palette @ is a
blow-up of a palette P if it can be obtained from P by replacing every color with some
number of copies of itself. More formally, we say that @) is a blow-up of P with partition

structure C(Q) = Ucec(P) V. for some pairwise disjoint sets V., ¢ € C(P), if
Q = {(z1,29,23) : ¢; €V, for all i € [3] and (¢, 2, ¢3) € P}.

Note that P is contained in a blow-up of ) if and only if there is a homomorphism from P
to ). In the case that there is not only a homomorphism from P to ) but an isomorphism,
we denote this by P = Q.

Given a 3-graph F' = (V, E) on n vertices, we say that P paints F if there exists a
total ordering 3 of V and a coloring x : V(¥ — C(P) such that for every edge zyz € E
with x 3y 3 2, we have

(x(zy), x(22), x(y2)) € P. (2.1)

Sometimes we refer to such a tuple (-3, x) as a painting of F' (using P). If there is no
painting of F' using P, we say that P does not paint F', or alternatively, that P is F-
deficient. We say that P does not paint a family F, or is F-deficient, if P does not paint F’
for every F' e F.

Palettes were introduced in [8,31,35] in the context of describing a general lower bound
construction for the uniform Turan density, called the Palette construction. Given a
family F of 3-graphs and a palette P < [t]*> on t colors such that P is F-deficient, we
construct an F-free hypergraph H with vertex set [n] as follows. Let zq,...,2; € [0,1]
with 3, x; = 1, and let y : [n]® — [¢] be an auxiliary coloring defined probabilistically
by coloring each pair independently with

P(x(ab) = i) = z;, Vabe [n]®, e [t].
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The edges of the hypergraph H are defined using the auxiliary coloring y as follows
H :={abce [n]®: a <b<cand (x(ab), x(ac), x(bc)) € P}.

One can observe that by definition, P paints H and therefore paints any subgraph of H.
Hence, since P is F-deficient, H is F-free. Moreover, the probability that a triple abc € [n] 3)
is an edge in H is given by
P(abce H) = Z LT T,
(i,j,k)EP

It can be shown, by a standard application of concentration inequalities, that for each 7,
with high probability the hypergraph H is (d,n)-dense for d = 3, . ). p Tix;2 when n is
taken sufficiently large.

The construction above naturally motivates the next definition. Denote the standard

(r — 1)-simplex by
Sr:: {(xla"'7xr)e[0>1]r: x1+"'+xT:1}'

Definition 2.2. A weighting of a palette P is a vector x = (x;);ec(p) € Sep). Given a
palette P with a weighting x, set
Ap(Xx) := Z LT Ty, -
(3,9,k)eP

We define the palette Lagrangian Ap of P as
Ap := max Ap(X).

xESc(p)
As defined in Section 1, the set of values obtained as the Lagrangian of a palette is
denoted by Apa := {Ap: P is a palette}. A consequence of the construction shown above

is the following folklore result.

Fact 2.3. Let P be a palette and let F be a family of 3-graphs such that P is F-deficient.
Then 7. (F) = Ap.

A folklore conjecture in the area, stated formally in [31], is that every lower bound
for a uniform Turan density should be obtained by a palette construction. In a recent
breakthrough, Lamaison [24] proved an approximate version of the conjecture showing that
for every family F, the Turan density 7. (F) can be approximated by a sequence of palette
Lagrangians. In this paper, we prove in some sense the converse of the conjecture: Every
palette Lagrangian is the uniform Turan density of some finite family F.

The proof of our main result proceeds by transferring the original problem to a Turan-
type problem for palettes. For this it is crucial that the property of being F-deficient is

invariant under homomorphisms.
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Fact 2.4. Let P and QQ be two palettes such that there exists a homomorphism ¢ : () — P,
and let F be a family of 3-graphs. If P is F-deficient, then Q) is F-deficient.

Proof. Suppose, to the contrary, that () paints some F' € F. Then there exists an ordering -3
of V(F) and a coloring x : V(F)? — C(Q) satisfying (2.1). Hence, by definition, the
ordering -3 and the coloring ¢ oy : V(F)? — C (P) witness that P paints F', contradicting
the assumption that P is F-deficient. U

The first consequence of Fact 2.4 is that the property of being F-deficient is closed under
taking subpalettes. In particular, this allows us to define the palette Turan density of

families of 3-graphs. Given a family F of 3-graphs, we define the palette extremal number
of F by

eXpal(n, F) := max{e(P) : P is an F-deficient palette with ¢(P) = n},

i.e., the maximum number of patterns an F-deficient palette with n colors can have.
Similarly as for hypergraphs, one can show that the quantity exp.i(n,F)/n® converges to a
limit.

empal(n7]:)
3

Proposition 2.5. The limit 7}1_{1010 exists.

Proof. Recall that a palette P is non-degenerate if every pattern of P contains 3 distinct
colors. For a family F of 3-graphs and an integer n > 3, we define the parameter g(n, F)
by

g(n,F) := max{e(P) : P is a non-degenerate F-deficient palette with ¢(P) = n}.

We claim that the quantity Wg_(?i)’(];)_m
deficient palette on n + 1 colors that has g(n + 1, F) patterns. Take a random sub-
set U < C(P) of size n and let P[U] be the induced subpalette on this set of colors. Then,

by Fact 2.4, we have that P[U] is F-deficient and consequently e(P[U]) < g(n,F). Hence,

is non-increasing. Indeed, let P be a non-degenerate J-

o(n, F) = Be(P[U]) = *—Tg(n+ 1,F),

g(n+1,.7—') g(n,]—') ] _ 1 1 ]
oo ot sy SR o o Since every non-negative non-increasing

s : : g9(n.F)
sequence has a limit, we obtain that 7}1_{1010 D) (=2)

by the simple observation that g(n, F) < expa(n, F) < g(n, F) + 3n>. O

which implies that (

exists. The proposition now follows

We define the limit obtained in Proposition 2.5 as the palette Turdn density of a family F,

Tpal(F) 1= lim M.

n—0 n3



ON POSSIBLE UNIFORM TURAN DENSITIES 7

A consequence of the work in [24,31] is that mp.(F) = 7.(F) for finite F (see Section 7
for more details). Therefore, to show Theorem 1.1, it suffices to show that every palette
Lagrangian is attained as a palette Turan density of a finite family.

By taking the uniform weighting x = (z;);ec(p) defined by z; = 1/c¢(P), we obtain that
d(P) < Ap. (2.2)

Moreover, if y = (y;)icc(p) is an optimal weighting for the palette P, then one can
approximate Ap by taking a sequence of blow-ups {S®},n of P with partition struc-
ture C'(S) = Uicer) V;(E) such that |V;(Z)|/C(S(£)) — y;. Conversely, every blow-up of P
yields a weighting for P. Hence, it follows that

Ap = lim max{d(S) : S is a blow-up of P with ¢(S) = n}. (2.3)

The equality in (2.3) and the fact that the property of being F-deficient is blow-up
invariant (Fact 2.4) hint at a way to obtain a palette Lagrangian as a palette Turan density:
finding a finite family F such that the extremal constructions for exp,(n, F) are exactly the
family of blow-ups of P. Unfortunately, such a family does not always exist (see Section 4),
but by adding an extra family of extremal constructions with the same palette Lagrangian,
one can achieve such a goal. Given a palette P, we define the reverse palette rev(P) of P

rev(P) = {(¢,b,a) : (a,b,c) € P}.

That is, rev(P) is the palette obtained by reversing the order of the patterns of P. We say
that a palette P is reduced if for every proper subpalette ) & P, we have Ag < Ap. We
follow the graph convention and let EXp .1 (n, H) = {Q : e(Q) = expa(n, H) and ¢(Q) = n}

be the set of extremal palettes. The following is the main technical result of this paper.

Theorem 2.6. Let P be a reduced palette. There exists a finite family H such that P
is H-deficient and for alln e N

EXpu(n, H) < {Q : Q is a blow-up of P or a blow-up of rev(P) and ¢(Q) =n}. (2.4)
In particular, it immediately follows that
eTpa(n, H) = max{e(Q) : Q is a blow-up of P with ¢(Q) = n}.

We remark that P is not necessarily isomorphic to rev(P). As a simple example, consider
P =1{(1,2,3),(1,3,2)} and rev(P) = {(2,3,1),(3,2,1)}. One can verify that in this case,
P # rev(P).
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Organization. The paper is organized as follows. The proof of Theorem 2.6 relies on
three main ingredients. The first is a palette variant of the removal lemma introduced
in [2], so in Section 3 we use a regularity lemma for palettes to prove counting and removal
lemmata for palettes painting graphs. The second is a structural Ramsey result in Section 4,
dedicated to the problem of distinguishing palettes based on the graphs they can paint.
The third component is a stability argument based on the work of [30] (Sections 5 and 6).
For a brief outline of the proof of Theorem 2.6, the reader may refer to the introduction of

Section 6. Finally, in Section 7, we present a proof of Theorem 1.1.

§3 REGULARITY LEMMA FOR PALETTES

For graphs, the following infinite removal lemma was shown in [3] (and a hypergraph

analogue in [5]).

Lemma 3.1. Given a (possibly infinite) family of graphs F and o > 0, there are M,ng € IN
and B > 0 so that the following holds for every graph G on n = ng vertices. If, for
every F e F with v(F) < M, G contains fewer than Bn*") copies of F, then G can be

made F-free by removing at most an?® edges.

The aim of this section is prove a version of this lemma for palettes. Instead of counting
the number of copies of some F' € F, we need to count the number of ways that a palette P

paints F'. This is made precise in the following definition.

Definition 3.2. Let F' be a 3-graph and P a palette. The number of ways that P paints F
is defined as the number of maps ¢: 0F — C(P) for which there exists a total ordering <
of V(F) such that (<, ) is a painting of F.

We are now prepared to state the aforementioned removal lemma.

Lemma 3.3 (Palette Removal Lemma). Given a (possibly infinite) family of 3-graphs F
and o > 0, there are M = M3 3, N = N33 € IN and 8 = B33 > 0 such that the following
holds for every palette P on n = N colors. If, for every s € [(]\24)], P paints the 3-
graphs F € F with |0F| = s and v(F) < M in less than n® ways, then there is an F-

deficient palette Q < P with |P . Q| < an?.

The proof of Lemma 3.3 is given at the conclusion of this Section. Similar to the proof
of Lemma 3.1 for graphs, it will require a regularity theory for palettes. In some ways it is
helpful to consider a palette merely as essentially an oriented 3-graph, since the number of
degenerate patterns is O(n?). Let us define what it means for sets of colors in a palette to

be e-regular. Let P be a palette and suppose that Wy, Wy, W3 < C(P) are non-empty. We
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set BE(Wy, Wo, W3) = (Wy x Wy x W3) n P and e(Wy, Wy, Wa) = |E(Wy, Wy, W3)|*. Then
the density of P induced on (Wy, Wy, W3) is given by
6(W17 W27 W3)
AWy, Wy, W) = .
(VW )= o
Definition 3.4. We call (V1, Vs, V3) e-regular if, for all Wy, < Vi,Wy < Vo, W3 < V3
with |W;| = €|V;|, i € [3], we have

|d(Wy, Wa, W3) — d(Vi, Vo, V5)| <&

As discussed above, the most important feature of the above definition is that it is
sensitive to order, and the regularity of (V7,V5,V3) has no bearing on the regularity
of (V4,V1,V3). However, we can derive many properties of these regular color sets by
applying corresponding results in the unoriented hypergraph setting (see Lemma 3.10
below), so we give this definition as well. Let H = (V, F) be a 3-graph and suppose
that X;, Xs, X3 € V are non-empty. We set

E(Xl,XQ,Xg) = {xyz eF:xe€ X17y S XQ,Z S Xg}

and e(X1, Xo, X3) = |F(X1, X3, X3)|. Then the density of H induced on X, X5, X3 is
given by

€(X17X27X3>
d( X, X X3) 1= —————= 22
(%0, X2 Xs) = TR R

Definition 3.5. Suppose H = (V| E) is a 3-graph and that X, X, X3 < V(H) are
non-empty. We call Xy, X5, X3 e-regular if, for all Y1 € X1,Y, € X, Y3 © X3 with |Y;| >
e| X;|, i € [3], we have

|d(Y1,Ya, Ys) — d(X1, Xo, X3)| < e

As usual we will be interested in partitioning C'(P) into a large (but bounded) number

of parts so that most (V;,V},V}) are regular, so we also need the standard notions of
equipartitions and refinements.
Definition 3.6. Given a set C, an equipartition A of C' is a partition C' = Uie[t] Vi,
so that ||V;| — |Vy|| < 1 for all i,¢ € [t]. A refinement of A is an equipartition B =
Wicrg Uiepg Vis with Viy € Vi for all i € [t] and j € [¢]. We also identify A with the family
of partition classes, i.e., A ={V;: i€ [t]}.

Our palette analogue of the well-known Szemerédi regularity lemma is the following.

Theorem 3.7. For all e > 0 and m € IN there exist M = M3, N = N37 € N so that given
any palette Q with ¢(Q) = N there is an equipartition A = {V; : i € [t]} of C(Q) so that

IFor ease of notation we suppress the dependency on P when it is clear from the context.



10 D. KING, S. PIGA, M. SALES, AND B. SCHULKE

(1) m <t <M and
(2) the ordered triple (Vi,V;, Vi) is e-regular for all but et* of (4,7, k) € [t]*.
Moreover, given some equipartition Ay of C(Q) with at most m parts, there is an A as

above which refines Ay.

In our application we need a strengthening of this; in particular, the e-regularity obtained

should be allowed to depend on the number of parts ¢ in the partition, as follows.

Corollary 3.8. For all non-increasing maps € : N — (0,1] and m € IN there are M =
Mss, N = N3g and § = d35 > 0 so that given any palette Q) with ¢(Q) =n = N there is
are an equipartition A = {V; : i € [t]} of C(Q) and an equipartition A" = {U; : i € [t]} of
some subset of C(Q) so that:

(i) m<t< M,

(i) U, < Vi with |U;| = on,
(iii) the ordered triple (U;, U;, Ug) is E(t)-reqular for all (i,7,k) € [t]*, and
(iv) we have |d(U;, U;, Uy,) — d(V;, V;, Vi)| < E(0) for all but E(0)* of (i, 5, k) € [t]>.

The proof of Theorem 3.7 follows along the standard technique of iterated refinement
used for graph and weak hypergraph regularity, and the method to obtain Corollary 3.8
from Theorem 3.7 was developed in [2] for graph-testing problems. For the interested
reader we include the proofs of Theorem 3.7 and Corollary 3.8 in Appendix A.

Before we prove Lemma 3.3, we show a counting lemma for the number of ways in
which a palette paints a 3-graph. We use the following result, which counts the number
of copies of a linear hypergraph inside a regularly partitioned hypergraph. We state only

the 3-uniform case.

Lemma 3.9 ([22, Lemma 10]). Given ,dy > 0 and ¢ € N there are € = e34(7, do, )
and N = Nso = (7,do,l) such that the following holds. Let F be a linear 3-graph
with V(F) = [{] and H an (-partite 3-graph on parts Vi, ..., Vy with |V;| = N for eachi € [{].
Suppose that {V;}iey is e-reqular with density dy = dy for every f € E(F). Then the number
of copies of F in H that map each vertez i € [{] to V; is at least (1 — ~)d5" [ Licpq IVil-

By creating a hypergraph which captures the structure of P, we can obtain a similar

statement estimating the number of ways in which P paints a given 3-graph F.

Lemma 3.10. Given ~,dy > 0 and s € N there are € = €310(7,do,s) and N = N31g9 =
(7, do, s) such that the following holds. Let F be a 3-graph with |0F| = s and P be a palette
whose colours are partitioned into C(P) = Vi v ... v Vi where |V;| = N for every i € [s].

Suppose there is an ordering < of the vertices of F' and a map ¢: 0F — [s] such that for
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each uwvw € E(F) with v <v < w, the triple (Vo) Viotuw): Vioww)) 5 e-reqular in P with
density at least dy. Then F is painted by P in at least (1 — 'y)dg(F) [ Tuveor Vo different

ways.

Proof. We write uvw for {u,v,w} whenever u < v < w for u,v,w € V(F). Let F? be
a 3-graph with vertex-set 0F and all edges of the form {uv,vw,vw} where vvw € E(F).
Note that F? is linear and e(F) = e(F?). For each uv € 0F let V** be a copy of V;, and
label the copy of a € V; as ™ € V;**. Let H be a 3-graph with vertices V(H) = () V;**

wveOF
i€[k]

and edges
E(H) = {a"b"c"™ € V(H)(g): wv, uw,vw € 0F, and (a,b,c) € P}.

In words, H is obtained by taking s = |0F| copies of C(P), indexed by uv € 0F, and then
adding a 3-edge xyz only when z, y, and z are part of distinct copies and, when viewed
as an ordered triple in C(P), they give a pattern in P. Now if (V;,V}, V}) is e-regular in
the palette P (Definition 3.4), then the vertex sets (V*, Vi, V") are e-regular in H for
each wv, uw,vw € 0F (Definition 3.5). Consider in particular the s sets given by o(uv)
for uv € OF. Since F? is linear, Lemma 3.9 yields at least (1 —y)dS(Fa) [ Luveor |Vl copies
(or embeddings) of F in H that map each uv € V(F?) to some vertex in V). Write
for the collection of such embeddings. Let x : V(H) — C(P) be the projection map which
sends a" to x(a"’) = a. Note that for every ¢) € U, the tuple (<, x 0 ¢) is a painting of F’
using P and that any two distinct embeddings 1,1’ € ¥ get projected to distinct paintings,
whence the number of such paintings is at least (1 — fy)dS(F) [ Tuveor Vetun)!- O

We are now ready to prove the removal lemma using the counting lemma.

Proof of Lemma 3.3. Let Py(F) be the set of all palettes with color set [t] which paint at
least one F'e F.
We define the map vr: IN — IN5( by

vr(t) = A0ax min{|V(F)|: F € F and R paints F'}

(and v£(t) = 0 if P,(F) = @). Since P,(F) is finite for every ¢, the maximum exists. The
idea is the following. Given a palette P that paints every small F' € F in few ways, we
apply the palette regularity lemma. From this we obtain a “reduced” palette R with a
constant number of colors ¢ and a “cleaned” palette @) similar to P. If () would still paint
some F' € F, then R would paint F' and hence - using the definition of vx - some F’ € F
with few vertices. Then the counting lemma entails that P must paint F’ as well. Let us

formalize this argument.
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Given « > 0, define the function £: Ny — [0, 1] by

2a/9 if t =0 and
E(t) =
e510(1/2,20/9, (*7V)) ift>1.
Note that we may assume that the functions N;19(7,do, s) and e310(7, do, $) are non-
decreasing and non-increasing in s, respectively. Let Msg, N3, 0 = 035 be the constants

given by an application of Corollary 3.8 with £ and
m>9/a. (3.1)

Finally, take
(20y(5)5(%)

M = max vg(r), N =max {N3.8,(15N5.1o(1/2,2a/9, (]\24))}, B < 9 5

re[Ms.g]

Now we argue that these choices of M, N, and [ have the desired property. Given a
palette P with n > N colors, apply (the conclusion of) Corollary 3.8 to obtain equipar-
titions A = {V; : i € [t]} and A" = {U; : i € [t]} satisfying (¢)-(iv). Note that in particu-
lar, |U;| = 6N = N3 10(1/2,20/9, (A;)) We produce a ‘reduced’ palette R with C'(R) = [t]
by including the pattern (4,7, k) in R if

(1) 14,7,k are pairwise distinct,

(2) |d(U:, Uy, Uy) — d(Vi, V;, Viy)| < €(0) = 2a/9, and

(8) d(U;,U;,Uy,) > £(0) = 200/9.
Let @ < P be the ‘cleaned’ version of P, where we delete all edges (a,b,c) € P with
aeV;,beV;,ceV, when (i,7,k) ¢ R. In this way, it is easy to see that () is contained in
a blow-up of R.

As in many other applications of the regularity lemma, it is not hard to check that
1PN Q|<an’. (3.2)

Indeed, there are at most 3¢* triplets of indices not satisfying (). Thus, due to (3.1), at
most 3t3(n/t)? < 3n3/t < an®/3 patterns are deleted in this way. By Corollary 3.8 Part (iv)
there are at most £(0)t* = 2at?/9 triplets (i, j, k) such that |d(U;, U;, Uy) — d(Vi, V;, Vi)| >
£(0), meaning that at most n3/t3-2at®/9 < 2an3/9 patterns need to be deleted to ensure (2).
Finally, using that for the remaining triplets of indices (2) holds, in (3) we delete at
most 4an?/9 edges.

Suppose for a contradiction that ) paints a hypergraph F € F. Since @ is contained
in a blow-up of R, it follows that R paints F as well. Therefore, keeping in mind
that ¢(R) =t < Msg, there is some hypergraph F’ € F painted by R with the additional
property that v(F’) < vz(t) < M. Let s = |0F'| < (V) and let ¢ : 0F' — C(R) = [t] be
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the coloring given by definition of painting (we leave the vertex ordering to be implicit).
Due to (1)-(3) and (4 ) in Corollary 3.8, the map ¢ satisfies the conditions of Lemma 3.10,
when restricted to the subpalette U; w ... w U,, which implies that ) paints F” in more

than Sn® ways, a contradiction. O]

§4 A RAMSEY RESULT

Given two distinct 3-graphs GG and H such that neither is a subgraph of the other, there
always exists a 3-graph F' with the property that G' contains a copy of F', but H is F-free.
Indeed, one can take the 3-graph F' to be G itself. It is somewhat natural to ask if the
same is true for palettes. That is, for what pairs of palettes P and (), does there exist
a 3-graph F' such that P paints F', but ) does not paint F'? The goal of this section is to
answer this question. We remark that similar considerations were mentioned in [24].

Given a palette P on n colors, recall that the reverse palette rev(P) of P as
rev(P) - {(vaaa) : (a,b,c) € P}a

that is, rev(P) is the palette obtained by reversing the order of the patterns of P. Note
that a palette P paints a 3-graph F' if and only if rev(P) paints F'. Indeed, this can be seen
by taking the ordering of the vertices in which P paints F' and reversing it. A consequence
of this observation is that no graph can distinguish a palette P from rev(P). It turns out
that up to taking blow-ups, rev(P) is the only palette for which there is no 3-graph that
distinguishes it from P. We remind the reader that a palette () is contained in a blow-up
of P if there exists a homomorphism v : () — P. The next lemma is the main result in

this section.

Lemma 4.1. Let P and @ be palettes such that () is not contained in a blow-up of P nor
in a blow-up of rev(P). Then there exists a 3-graph F' such that P is F-deficient and Q
paints F'.

The proof of Lemma 4.1 is completely Ramsey-theoretical and relies on a result of Nesetril
and Rodl [28] about Ramsey classes for ordered Steiner systems. We start with some
preparations. An ordered k-graph (H, <) is a pair where H is a k-graph and < is a total
ordering of V(H). Given two ordered hypergraphs (F, <) and (H, <), we say that (F, <) is a
subgraph of (H, <) if there exists an injective order-preserving map ¢ : V(F) — V' (H) that
is a homomorphism, i.e., a map such that (z) < ¢(y) for z < y and such that (f) € E(H)
for every edge f € E(F). Let (((;I:j))) denote the family of copies of (F, <) in (H, <).
The next theorem shows that the class of ordered linear k-graphs is edge-Ramsey (see
also [6, Lemma 2.12] and [33, Corollary 3.12]).
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Theorem 4.2 ([28]). Let (G, <) be an ordered linear k-graph with k = 2, and let r = 1 be
(H, <)>

an integer. Then there exists an ordered linear k-graph (H, <) and a family G < ((G 9

of copies of (G, <) in (H, <) satisfying the following statements:
(i) For any r-coloring of the edges of H, there exists a monochromatic copy (G', <) € G.
(13) For any two distinct copies (G',<),(G",<) € G, it holds that either |V(G') n
V(G| <1 or V(G") nV(G") = e for an edge e € G for some (G3,<) € G.

We remark that for k& = 2, a linear k-graph is just a graph, and condition (ii) translates
to the fact that two distinct copies (G', <) and (G”, <) € G intersect either in an emptys
set, a single vertex or in exactly one edge. Theorem 4.2 can be used to prove the following
Ramsey result about systems of graphs. We note that similar statements were obtained

previously in [1,29].

Proposition 4.3. Let n,t > 1 be integers, and let (G,<) be an ordered graph where
G =, G; is the union of n pairwise edge-disjoint ordered graphs with vertex set V(G).
Then there exists an ordered graph (H, <) where H = | J;_, H; is the union of n pairwise
edge-disjoint ordered graphs with vertex set V(H) such that any t-coloring of H yields a
set X < V(H) with the following properties:

(i) For 1 <i < n, we have (H;[X], <) = (G}, <).

<
(17) For 1 <i

i <, the graph H;[X] is monochromatic.

Proof. For the sake of brevity, throughout the proof we will omit the total ordering <
from the notation and denote an ordered graph (H, <) by H. We inductively construct
ordered graphs A°, ..., A" such that for each 0 < j < n, the ordered graph A7 = J" , Ag
is the union of n pairwise edge-disjoint ordered graphs on V(A7) as follows: Let A° = G
and A) = G, for 1 <i < n. Suppose now that for 1 < j < n we have already defined the
ordered graph A’~! and want to define A7. Apply Theorem 4.2 to the ordered graph qu

J

) Al
and ¢ colors to obtain the ordered graph A} and a system of copies A; < < r ’ 1) satisfying
J

properties (i) and (ii) of the statement. In particular, for any two copies B, B’ € A; of

Ag_l we have that
V(B)nV(B)| =1 or V(B)nV(B)ce (4.1)

for some edge e of some copy of A;_l in A;. For ¢ # j, let A{ be the ordered graph
on V(A;:) (with the same total ordering < on V(A;)) obtained by adding a copy of the
ordered graph A?™' to each set of vertices V(B) with B € A;, see Figure 4.1. By (4.1),
each pair of copies B, B’ € A; either intersects in a single vertex or in an edge of some copy

of qu. Hence, keeping in mind that the graphs A7~ are pairwise edge-disjoint, all A7
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are pairwise edge-disjoint. We set A7 = 3:1 Al The key point of the construction is that

the ordered graphs A, ..., A" satisfy the following claim.

FIGURE 4.1. An example with n = 2. The ordered graph A? is in red and
AY is in blue. On the second line we have the Ramsey graph A} with several
copies of AY all intersecting in either an edge or a single vertex. Finally, in

the last line we have the graph A} on the same set of vertices.

Claim 4.4. Let 0 < j < n. Then every t-coloring of A" contains a copy of AJ such that

the ordered graphs Ai are monochromatic for 7 +1 < k < n.

Proof. We prove the statement by reverse induction on j. If j = n, then the statement is
vacuously true. Now assume that for a t-coloring of A" we obtain a copy A7+ = (J | A7*!
of A7*! such that the ordered graphs flﬁl are monochromatic for j +2 < k < n. Consider
the restriction of the ¢-coloring to the ordered graph flﬁ} By construction and Theorem 4.2,
there exists a monochromatic copy A§+1 of A?H. For i # j, let A7 = Ag'“[V(A;ZH)]. It is
casy to see that A7 = U, flf is a copy of A7. Moreover, since fli c flﬁl for j+2 <k <n,
we have that /li is monochromatic for j + 1 < k < n. This concludes the proof of the

claim. O

Let H := A™. Then by Claim 4.4, every t-coloring of H contains a copy of A” such that

every A? is monochromatic. Since A° = G, properties (i) and (ii) follow. O

The second auxiliary result establishes the existence of an ordered linear k-graph with
the property that, regardless of how one orders its vertices, there will always be an edge
which according to the new ordering is arranged in either a strictly increasing or decreasing
order (with respect to the original order). We remark that the problem becomes somewhat

simpler if we drop the condition that the k-graph is linear. Indeed, in this case, one can
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construct a graph by simply taking the complete k-graph on (k — 1) + 1 vertices and
applying the Erdds—Szekeres theorem [13].

Proposition 4.5. For every integer k = 2, there exists an ordered linear k-graph (H, <)
with the following property. For any total ordering 3 of V(H), there exists an edge

{x1, ..., 2} with xy < ... < xx such that either

(a) the edge {x1,...,xx} is increasing in -3, i.e., x4 3 ... 3 Ty; Or

(b) the edge {x1,...,xx} is decreasing in -3, i.e., x1 & ... & y.

Proof. Let Sy be the group of all permutations on k elements, and let id, rev € S; be the
permutations given by id(7) = ¢ and rev(i) = k + 1 — 4. In other words, id and rev are the
permutations that arrange the elements in increasing and decreasing order, respectively.
Suppose that o € S\ {id, rev}. Then there exist integers a,, by, ¢,, d, € [k], not necessarily

distinct, satisfying a, < b,, ¢, < d,, and
o(a,) <o(b,) and o(cy) > o(d,). (4.2)

For every permutation o € Sy \ {id, rev}, we construct an ordered linear k-graph (G,, <)
as follows. Let GG, be a k-graph on 3k — 3 vertices consisting of three edges ey, ey, and
es, with |e; ne;| = 1 for all 4 # j. Let < be an ordering of V(G,) with e; = {z1,..., 2},
es = {y1,...,yx}, and e3 = {z1,..., 21}, where the vertices are labeled in increasing order

in <, such that

xao = ZCO’? xbo‘ = yaga a’nd ybo- = Zdo" (43>

Observe that such an ordering is always possible (e.g., see Figure 4.2). Let (G, <) be the
ordered k-graph obtained by taking the vertex-disjoint union of (G,, <) for all permutations
o € S~ {id, rev}. Our ordered linear k-graph (H, <) is the k-graph obtained by applying
Theorem 4.2 to (G, <) with t = k! colors.

1 2 3 4 5 6 7 8 9

FIGURE 4.2. An example of G,, for the permutation o € Sy given by (1) = 3,
0(2)=1,0(3) =4 and 0(4) =2 and a, = 2, b, = 3, ¢, = 1 and d, = 2.
The edges are given by e; = {1,2,4,6} (green), eo = {3,4,5,7} (blue) and
es = {2,5,8,9} (red).
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The importance of the k-graphs G, is illustrated in the next claim. Given an ordered
edge e = {xy,..., 2%} with x; < ... <z, a permutation ¢ € S, and a total ordering -3,

we say that the edge e is o-compatible with respect to the total ordering 3 if
z; 3x; ifand onlyif o(i) < o(j). (4.4)
In particular, the edge e is id-compatible with respect to <.

Claim 4.6. Let 0 € Si \ {id,rev} and let 3 be a total ordering of V(G,). Then not all
the edges of (G,, <) are o-compatible with respect to 3.

Proof. Suppose, for the sake of contradiction, that 3 is a total ordering of V(G,) such that
all the edges are o-compatible with respect to 3. Let ey = {z1, ...z}, e2 = {v1,. .., Uk},
and ez = {z1,..., 2t} be the edges of G, where the vertices are labeled in increasing order
with respect to < and satisfy (4.3). Since all the edges are o-compatible with respect to -3,
we have by (4.2), (4.3), and (4.4),

mao =3 xbcr = yacr =3 ybo = Zda =3 Zco' = xaa7
which is a contradiction. This concludes the proof of the claim. U

We are now ready to prove that (H, <) satisfies the statement. Let 3 be a total ordering
of V(H), and let S = {o1,...,0,m} be a labeling of the k! permutations. We define an
auxiliary coloring y : H — [k!] of the edges of H as follows. For every edge e € H,
let x(e) =i if the edge e is o;-compatible with respect to 3. Since for every edge e, there
exists a unique permutation that is compatible with respect to -3, the auxiliary coloring y
is well defined.

By the construction of (H, <) and Theorem 4.2, there exists a monochromatic copy
of (G, <) with respect to x. In particular, this implies that there exists 7 € Sy such that
every edge of G is 7-compatible with respect to 3. Since G is the disjoint union of G,
for o € Sk \ {id, rev}, we obtain by Claim 4.6 that 7 € {id,rev}. If 7 = id, then every edge
of G satisfies (a). Otherwise, if 7 = rev, then every edge of G satisfies (b). This concludes
the proof of the proposition. O

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. Let t := ¢(P) and n := ¢(Q) be the number of colors of P and Q.
Let m := e(Q) and enumerate the patterns of @ by @ = {q1,...,¢n}. We construct an
ordered graph (G, <) on the vertex set [3m] with the natural order < by taking G = (J;_, T}

as the vertex-disjoint union of triangles 7j, with vertex set
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for 1 < j < m. We partition the edges of G into n edge-disjoint ordered graphs G = (J;_, G;
as follows. For each 1 < j < m, let ¢; = (a;,b;, ¢;) € Q be the j-th pattern of (). We define
the subgraphs G; on the vertex set [3m] by setting

EG)= |J Bi-23-1o |J @Bi-23po | {Bi-13}.
je[m]:a;=i je[m]:b;=i je[m]ic;=i

(4.5)

Informally speaking, each triangle 7j corresponds to the j-th pattern of ) and the graph G;
consists of all those pairs across all patterns which have the color 7. It is easy to check
that the G;’s are pairwise edge-disjoint and that G = | J!_, G; (e.g., see Figure 4.3).

N N N N
1 2 3 4 5 6 7T 8 9 10 11 12

FIGURE 4.3. An example of G for the palette @ = {q1, ¢2, ¢3, ¢4} given by
¢1 = (blue, green, blue), g = (blue,red, red), g3 = (green, green, blue) and
g4 = (red, blue, green). The graph G consists of m = 4 triangles and it can

be partitioned into Gpjye U Ggreen U Grea as shown in the picture.

We construct our desired 3-graph F®) by applying Propositions 4.3 and 4.5. Let (H, <)
with H = |, H; be the ordered graph obtained by applying Proposition 4.3 to the ordered
graph (G, <) with G = | J;_; G; and t-colors. Set k := v(H) to be the number of vertices
of H and let (H, <) be the linear k-graph obtained by Proposition 4.5. We construct the
ordered graph (A, <) with vertex set V(A) = V(H) by replacing each edge e € H with a
copy (H®, <) of (H, <). Since the k-graph # is linear, every two copies H¢ and H® in A
intersect in at most one vertex. This in particular implies that A = [ J | A; is the union
of n edge-disjoint ordered graphs, where A; = | .., H{. Finally, the 3-graph F' := F @) is
the hypergraph with vertex set V(F) = V(A) and the edge set as follows. Let ¢ : A — [n]
be the map defined by setting ¢(e) = i if and only if e € A;. With this notation in mind,
the edge set of F' is given by

F = {{a:,y,z} e A® : x <y <z {x,y}, {x, 2}, {y,2} e A
and (p(z,y), o(x, 2), 9(y. 2)) € Q} (4.6)

In other words, F' is the 3-graph where the edges correspond to those triangles in A
whose color pattern is given by the palette ). Note that the construction given by (4.6)
immediately gives us that @) paints F. Indeed, just take the natural order < of V(F') and
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consider the coloring y : V/(F)® — [n] given by

o(x,y), if{x,y}e A,

1, otherwise.

x(z,y) =

We claim that P does not paint F'. Suppose to the contrary that it does. Then there
exists a total ordering -3 of V(F) and a coloring yp : V(F)® — [t] such that

(XP(xa y)a XP(x> Z)v Xp(l’, Z)) epP

for every {z,y,z} € F with x 3 y 3 z. Consider the restriction of yp to the edges
of A< V(F)®. By construction of A and Propositions 4.3 and 4.5, there exists a copy
of (G, <) with G =Gy u ... UG, and vertex set X = {x1,...,23,} with z; < ... < 3,
such that

(i) For 1 <i < n, the graph G; is monochromatic with respect to xp
(ii) Either x1 3 ... 3 x3,, or r1 & ... & T3y,.

Note that by (4.6) and the definition of G, the induced graph F[X] is just a matching of
size m with edges {x3;_o, x3;_1,x3;} for 1 < j < m (see Figure 4.3). Let ¢ : C(Q) — C(P)
be the map defined by

(i) = xp(Gi),

i.e., (i) is the color of the monochromatic graph G;. Claiming that this map gives a
homomorphism from @ to P or a homomorphism from @ to rev(P), we split the proof into

two cases.
Case 1: 1 3... 3 x3,,.

For 1 < j < m, let ¢; = (a;,bj,¢c;) € Q be the j-th pattern of (). By (4.5) we have
that o(x3;_2, 3j-1) = a;, p(T3j_2,%3;) = b; and p(z3;_1,23;) = ¢;. Since xp is a witness
that P paints F' and we further have xs;_o 3 x3,_1 3 w3; and {z3;_2, z3j_1,23;} € F, we
infer that

(Vlay), ¥(by), ¥(c;)) = (Xp(w3j-2, 23j-1), xP(T3j-2, T35), XP(%3j-1, T35)) € P,

for 1 < 7 < m. This in particular implies that ¢) is a homomorphism from @) to P, which

contradicts the assumption of the lemma.
Case 2: 1 & ... & X3,.

Similarly as in Case 1, since P paints I’ and x3; 3 23,1 -3 o3;_2, wWe have that

(w(cj)a@b(bj)ﬂb(aj)) = (XP(9€3j—1,$3j),XP(Isj—2>$3j)aXP($3j—2,$3j—1)) € P,
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for 1 < j < m. This implies that ¥ (q;) = (¢ (a;),v(b;), 9 (c;j)) € rev(P) and hence v is a

homomorphism from @ to rev(P), which is again a contradiction. O

Remark 4.7. We observe that the same proof of Lemma 4.1 can be used to prove the
statement for a finite family of palettes {P,..., P.}. That is, given a palette @) that is not
contained in a blow-up of P; and rev(F;) for 1 < i < k, then there exists a 3-graph F’ such
that () paints F' and none of the P;’s paints F.

§5 PROPERTIES OF BLOW-UPS OF PALETTES

In this section, we discuss properties of palettes contained in a blow-up of a given
palette P which will be necessary for the stability argument in Section 6. We begin by
examining the interplay between P and rev(P). Let C(P) = C(rev(P)) = [t]. The first
observation is that since (a,b,c) € P if and only if (¢, b,a) € rev(P), it follows that P
and rev(P) have the same Lagrange polynomial and, consequently, the same Lagrangian.

Clearly, this still holds when inducing to any subset of colors.
Fact 5.1. Appy) = Avev(p)u] for every U < [t].

It immediately follows that P is reduced if and only if rev(P) is reduced. Another simple
observation is that if Sp and Siey(p) are blow-ups of P and rev(P) on the same set of
colors C' and with the same partition structure C' = | J;_, V;, then e(Sp) = €(Swev(p)). In
particular, this implies that the maximum blow-up of P on n colors has the same number
of patterns as the maximum blow-up of rev(P) on n colors (something we have already
used in the “in particular” part of Theorem 2.6).

The following observation shows that the Lagrangian of palettes is monotone with respect

to homomorphisms.
Observation 5.2. If ) and P are palettes and there is a homomorphism ¢ : (Q — P, then
Ag < Ap.

Proof. Let x € S¢(g) be a weighting of @ with Ag(x) = Ag. Then, for d € C'(P), define
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Let y = (yd>d€C(P) and note that y € S.p) because every a € C(Q) is in the preimage of
exactly one d € C(P). Since 9 is a homomorphism and x € S.(g), it follows that

Ap=2p(y) = D yaveys
(d,e,f)eP

-2 202 (2,
(die.))eP \aey(d) bevr () cev1(f)

> Z Tapxe = Ng.
(a7b7c)€Q

This concludes the proof. O

Recall that a palette P is reduced if for every proper subpalette () & P we have Ag < Ap.
We conclude our discussion on the interplay between P and rev(P) by showing that if P is
reduced and P % rev(P), then P is not contained in a blow-up of rev(P) and rev(P) is

not contained in a blow-up of P.

Proposition 5.3. Let P be reduced. If there is a homomorphism v : P — rev(P), then
P = rev(P).

Proof. First, we check that ¢ must be surjective. Indeed, if Im(v)) < C(rev(P)), then

Ap < Arev(P)[Im(w)] = AP[Im(w)] < Ap,

where the first inequality follows from Observation 5.2, the equality follows from Fact 5.1,
and the final inequality follows from P being reduced. This is a contradiction, and
therefore 1 is surjective. Since P and rev(P) have the same number of colors and patterns,

the surjective homomorphism ¢ must be an isomorphism, concluding the proof. O

The next two results deal with properties of reduced palettes P. Roughly speaking,
the first one states that any palette () which is contained in a blow-up of P and has
density d(Q) = e(Q)/c(Q)? very close to Ap must have a positive proportion of colors in

each class of the partition structure.

Proposition 5.4. Given a reduced palette P with t colors, there are f = Psq > 0
and € = €54 > 0 such that the following holds. Suppose that Q) is a palette that is contained
in a blow-up P' of P with partition structure C(P') = |J'_, Vi and ¢(P") = ¢(Q) :=n. If
in addition we have d(Q) = Ap — €, then |V;| = fn for every i € [t].

Proof. Suppose for the sake of contradiction, that the statement does not hold. Then, for

each integer m € IN, there exist a blow-up P'™ of P with partition structure C(™ :=
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C(P™) = J'_, V™ and a palette Q™ = P'™™ such that d(Q"™) > Ap — L and
1
v < L om 5.1
Vil < —e(@™) (5:.1)

for some sequence of indices i™ e [t]. By applying the pigeonhole principle, we obtain
a subsequence (which we reindex using m again) such that ™ is constant, say i™ = t.

Then, for each m € IN, we have

m) [v(m m m 1 2
Apiii-1) 2 A ey 2 AQUCT N VM) = d(Q™) — —=Ap——, (52)
where the first inequality follows from Observation 5.2 applied to P[[t—1]] and QU™ [C(™) <
Vt(m)], the second inequality comes from (2.2), the third from (5.1), and the fourth from the
choice of Q™. Since P is reduced, we must have Api—1)) < Ap, which contradicts (5.2)

for m large enough. O

Given a palette P and two (distinct) colors a,b € C(P), we say that b dominates a
if, for every pattern p € P containing a, any substitution of the color a with the color b
results in a pattern p’ € P. As an example, suppose that 1,2 € C(P) and 2 dominates 1.
Then (1,1,2z) € P implies that (1,2,z), (2,1,z), and (2,2,z) are all in P. Although it is
straightforward to verify the following lemma, we include a proof for the convenience of

the reader.

Lemma 5.5. For a reduced palette P with C'(P) = [t] there are no a,b € [t] such that b

dominates a.

Proof. First note that we may assume that there is no ¢ € [t] with (¢, ¢,c¢) € P. Other-
wise d(P[{c}]) = 1, whence P being induced would imply C(P) = {c}, and we would be
done.

Now suppose, for the sake of contradiction, that there are a, b € [t] such that b dominates a.

For z € S; we can write

/\P(Z) = Zafa(zl) + beb<zl) + nga,a(zl) + zl?fb,b<zl) + Zazbfa,b(zl) + g(zl)

for some polynomials fa, fo, faas fop: fap, and g in 2 = (2)ceffap;. Let x be an
optimal weighting of P witnessing Ap(x) = Ap. The hypothesis that b dominates a implies
that f, > f,, as well as fyp = foq, and 2f,, > fup, where the 2 appears since (a,b, x)
and (b, a,x) are both ‘covered’ by (b,b,z). We claim that the weighting y € S; given
by Yo = 0, yp = T + 3, and yy, = zy, for k € [t] \ {a, b} satisfies

Ap(y) = Ap(x) = Ap. (5.3)
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Indeed,

Ap(Y) = (2a + 23) fo(y) + (20 + 23)* fon(y') + 9(¥')
> 2o fo(X') + 2 fo(X') + @} fon (X)) + 22 fop(X') + 2202 fop (X)) + g(X)

= /\P(X)7

where Yy = (Ye)ee[i~fa,p} = (Tc)ee[]~fapy = X' On the other hand, note that y, = 0 and
therefore Ap(y) < Ap[g-(a)] < Ap, where we use the fact that P is reduced in the last
inequality. This contradicts (5.3), which concludes the proof. O

We finish the section by introducing a concept used in [30] that will be important in
the stability argument. Let P be a palette with C'(P) = [t]. A palette R contained in a
blow-up of P is rigid (with respect to P) if there exists a partition of its colors C'(R) =
U§:1 U; satisfying the following: If R is contained in a blow-up S of P with partition
structure C(S) = |J/_, Vi, then there exists an automorphism h : [t] — [t] of P such
that U; S Vi) for i € [t]. In other words, a palette R is rigid if there is essentially a unique
way to embed it in a blow-up of P. The next result shows that if P is reduced, then rigid
palettes always exist for sufficiently many colors. Recall that a palette is non-degenerate if

every pattern has exactly 3 colors.

Lemma 5.6. Let P be a reduced palette with color set [t]. Then there exists an integer
M := M;4(P) and a rigid palette R < [M]* with partition structure [M] = |J'_, U; such
that

(i) R is non-degenerate.
(11) For i€ [t], we have |U;| = 3t.
(13i) Any blow-up R' of R on M + 1 colors is rigid.

Moreover, if P % rev(P), then the palette R is not contained in a blow-up of rev(P).

Proof. Since P is reduced, there exists a real number § > 0 such that Ag < Ap — ¢ for
every proper subset () £ P. Let ¢, 3 be the constants given by Proposition 5.4. We will

choose a sufficiently large M satisfying the following conditions:
(a) M» 111

. . . o = t
(b) There exists a blow-up R of P on M colors with partition structure C'(R) = | J;_, U,

such that d(R) > Ap — min{d/2,¢/2}.

Note that condition (b) can always be satisfied because of (2.3). Let R be the palette

obtained by removing every degenerate edge from R. It is not difficult to see from conditions
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(a) and (b) that

e(R) — 3M?
M3

We claim that the palette R is a rigid palette satisfying properties (i), (ii), and (iii).

d(R) = > d(R) —3/M = Ap — min{é, ¢} (5.4)

We first check properties (i) and (ii). Property (i) follows immediately from the construc-
tion since we deleted all degenerate edges from R. To see that property (ii) holds, note that
by (5.4), we have d(R) = Ap — . Hence, Proposition 5.4 gives us that |U;| > M > 3t,
where the last inequality holds due to our choice of M (condition (a)).

We now proceed to prove that R is rigid. Clearly, R is contained in a blow-up of P
(namely R). Let S be a blow-up of P with partition structure C(S) = U§:1 V; and let
¢ : C(R) — C(S) be an embedding (i.e., an injective homomorphism) of R into S. We
define a mapping h : [t] — [t] by letting A(i) be an arbitrary index in [¢] such that

[V(U;) N Vi | =3

for i € [t]. Such a choice of h always exists because |U;| = 3t for i € [t]. Let Y; < U; be the
preimage of ¥(U;) N Vi) under 9, i.e., the subset of U; with ¢(Y;) < Vj). Our goal is to
prove that h : [t] — [t] is an automorphism of P and that ¢ (U;) < Vj, for every i € [t]
(that is, ¥; = U;). We will do that in several claims.

Claim 5.7. The map h is a homomorphism from P to P.

Proof. Note that if (iy,1i9,i3) € P, then there is a pattern (a,b,c) € Y;, x Y, x Y, in R.
Indeed, by definition, R contains all the non-degenerate patterns in U;, x U;, x U,.
And since |Y;| = [(U;) n V| = 3 for all i € [t], even if iy = iy = i3, there is
some non-degenerate pattern in Y;, x Y, x Y;,. However, since ¢ is a homomorphism,
the pattern (¢(a),¥ (D), (c)) € Vi) X Vi) X Vaas) is a pattern of S. This implies
that (h(i1),h(iz), h(i3)) € P and consequently, h : P — P is a homomorphism. O

Claim 5.8. The homomorphism h : [t| — [t] of P is bijective.

Proof. We construct an auxiliary blow-up S” of P with partition structure C(S") = U;zl th
defined by

ieh=1(5)
That is, the sets V}h are the union of the images of U; such that h(i) = j. It is clear that
C(S") = C(S). Moreover, note that some of the sets V" might be empty.
We claim that the map v : C(R) — C(S") is an embedding of R into S” such that ¢(U;) <
th(i). The latter part holds by definition. To see that it is an embedding, let (a, b, c) € U;, x
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Ui, x Uy, be a pattern of R. Then (i1, is,13) € P and hence, since h is a homomorphism, we
have that (h(i1), h(iz), h(i3)) € P. This implies that (¢)(a),1(b), ¥ (c)) € Vh"(m xth(
is a pattern of S” and v : R — S” is an embedding.

h
iz) * Vi(is)
Suppose, for the sake of contradiction, that h is not bijective. Then there exists an
index j € [t] such that V}h = @. This implies that there exists a homomorphism ¢ : R —
P[[t] ~ {7}]- Hence, by (2.2), Observation 5.2, and the definition of ¢, we have

d(R) < Ar < Ap[gpjy) < Ap — 6,
which contradicts (5.4). O

The last two claims show that A : [t] — [¢] is an automorphism of P. Suppose, without
loss of generality, that h(i) =4 (and henceforth we index both U; and V; by i € [t]).

Claim 5.9. For all i € [t] we have Y(U;) < V;.

Proof. Suppose to the contrary that there exist indices 7,7 and a color x € U; such
that ¢(x) € V;. We claim that j dominates ¢ in P. Let p € P be a pattern containing the
color . Suppose, without loss of generality, that p is of the form p = (i, k, £), where k, { € [¢]
(k and ¢ might be equal to ¢ or j). Then we can choose distinct b € Yy, and ¢ € Y, (which
are also both distinct from x) and so the triple (z,b,¢) € U; x V), x Y, is a pattern of R.
This implies that ((x), (D), (c)) € V; x Vi, x V; is a pattern of S. Hence, by construction,
we have (j, k,¢) € P. That is, by substituting the color i with the color j, we still have a
pattern of P. However, since P is reduced, by Lemma 5.5 there are no pairs {i, j} with j

dominating ¢, which yields a contradiction. 0

Claims 5.7-5.9 show that R is a rigid configuration. Next we prove that R satisfies
property (iii). First observe that the above argument verifying the rigidity of R used only
properties (i) and (ii) of Lemma 5.6 and (5.4). Thus, it is sufficient to check these for any
palette R' on M + 1 colors obtained by taking a blow-up of R. Viewing R’ as a blow-up
of P, it has partition structure C(R') = | Ji_, V/, where |V;| < |V/| < |Vj| + 1 for all 4 € [¢]
and so R’ inherits properties (i) and (ii) from R. Moreover, by our choice of M in condition
(a), we have
e(R) — 3M?

M3
= — mi .
A1) 5 = Ap —min{d, e}

d(R/) = m

> (d(R) — 3/M)

Thus, by the same proof, the palette R’ is rigid.
Finally, to prove the moreover part, suppose that P % rev(P) and that there exists a
homomorphism ¢ : R — rev(P). Let C(R) = | J'_, W; be the partition structure of R as a
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subpalette of a blow-up of rev(P), i.e., W; = ¢~ (i). We construct a map ¢ : [t] — [t] by
letting £(i) be an index such that

Such an index always exists since |U;| = 3t. For i € [t] let Z; = U; n We(;y. We claim that &
is a homomorphism from P to rev(P). Let (i1,142,43) € P be a pattern. Since R is obtained
by deleting just the non-degenerate edges of a blow-up of P and |Z;,|,|Z;,|, |Zi,| = 3, there
exists a pattern (a, b, c) € Z;, x Z;, x Z;,. This implies that (a, b, c) € W) X We(iy) X Weiy)
and consequently (£(i1),&(72),£(i3)) € rev(P). Hence, £ : P — rev(P) is a homomorphism.
A contradiction now follows from Proposition 5.3 and the fact that P is reduced. This

concludes the proof of Lemma 5.6. U

§6 STABILITY ARGUMENT

The main goal of this section is to provide a proof of Theorem 2.6. We remark that
our approach is very similar to the approach in [30], but adapted to our needs. We begin
with an outline of the proof. For a reduced palette P < [t]* with ¢ colors, define the
family F(P) of unpaintable 3-graphs as follows:

F(P) :={F : Fis a 3-graph and P is F-deficient} . (6.1)

The first observation is that if @) is an F(P)-deficient palette, then () is contained in a
blow-up of P or in a blow-up of rev(P) (see Lemma 4.1). Unfortunately, the family F(P)
might be infinite in size and hence cannot be used directly as a witness for Theorem 2.6. To
circumvent this issue, we choose an appropriate integer M and truncate the family F(P)

to the subfamily F(P)ys of 3-graphs with at most M vertices, i.e.,
F(P)y :={FeF(P):v(F)<M}. (6.2)

Let @ be an F(P)y-deficient palette that maximizes the number of patterns among
all F(P)y-deficient palettes; in other words, suppose that Q) € EX,a(n, F(P)y). An
application of the removal lemma for palettes (see Lemma 3.3) implies that @ is very close
to a blow-up of P or a blow-up of rev(P) (see Corollary 6.1 below). We then complete the
proof using a stability argument, showing that any extremal palette sufficiently close to a
blow-up of P must actually be a blow-up of P (see Lemma 6.2). Now let us proceed with
the details.

We remind the reader that given two palettes P and () on n colors, the edit dis-
tance |[PAQ| = |P\ Q|+ |Q ~ P| is the minimum number of patterns that must be deleted
or added to transform P into ). Moreover, we say that P is a-close to Q if |[PAQ]| < an?.

The following is a corollary of Lemmata 3.3 and 4.1.
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Corollary 6.1. Given a palette P and o > 0, there exist M = Mg, N = Ng1 € N such
that the following holds for every palette Q onn = N colors. If Q is F(P)yr-deficient, then

it is a-close to being contained in a blow-up of P or a blow-up of rev(P).

Proof. Given a > 0, apply Lemma 3.3 to the family F(P) to obtain M, N € N and 5 > 0.
The conclusion of Lemma 3.3 entails that for every F(P),s-deficient palette @ with ¢(Q) =
n = N, there exists an a-close palette @)’ that does not paint F(P). Suppose for the sake of
contradiction that )’ is not contained in a blow-up of P or rev(P). Then Lemma 4.1 yields
a 3-graph F' painted by @’ but not by P. In particular, F' € F(P), a contradiction. O

The next lemma is the key technical result of this section. We prove it using a stability

argument similar to the one in [30].

Lemma 6.2. Let P be a reduced palette with C(P) = [t]. There are N := Ngo(P) € N,
M = Mg2(P) € N and o := cgo(P) > 0 such that for all integers n = N and m = M, the
following holds. If Q € EXpu(n, F(P)m) and Q is §-close to a blow-up of P, then Q is a
blow-up of P.

Proof. Let My = Ms¢ be the integer obtained from Lemma 5.6, and € = €54, 6 = 54 > 0

be the constants given by Proposition 5.4. Set a and v as real numbers such that
a = min{(8/4)*M7 £/3} and = (3/4)*M . (6.3)
Consider the family of palettes R given by
R:={R:c(R) < M, + 3 and
R is neither contained in a blow-up of P nor in a blow-up of rev(P)}.

For every R € R, by Lemma 4.1, there exists a 3-graph Fr such that R paints Fz and P
does not paint Fg (i.e., Fr € F(P)). Let My := maxper{v(Fr)}. Such an M, always exists
since R is a finite family. We will show that the statement of the lemma holds for M, as M
and N € IN large enough. Fix integers n > N and m > M,. An immediate consequence of

our choice is the following:
If @ does not paint F,,(P), then @ is R-free. (6.4)
Civen n e IN, let S be a blow-up of P with partition structure [n] = | Ji_, V, i.e.,
S ={(z,y,2) e Vix V; x V : (i, 4, k) € P}.

Given any such S we can define the set of missing patterns A and the set of bad patterns B
of @ (with respect to S) by

A:=5NQ and B:=0Q\ 9, (6.5)
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i.e., the patterns from S missing in () and the patterns in ) that are not in our target
blow-up S. Let @ € EXpa(n, Far, (P)) be a maximum palette that does not paint Fyy, (P)
and is §-close to a blow-up S < [n]* of P. Since [QAS| < $n®, we have |A| + |B| < $n®.
Moreover, because S is a blow-up of P, it does not paint Fy/(P). Therefore, by the
maximality of @, we have that |A| < |B| < $n®.

It will be useful later to compare P not to .S but instead to some blow-up S’ of P with n
colors that minimizes |B| among all blow-ups of P with n colors. Fortunately, we can still
check that such S’ is not too far from ). Indeed, if there exists a blow-up S” with partition
structure [n] = Uf;l V! such that the missing patterns B’ = @ \. S of @) with respect to S’
satisfy |B’| < |BJ, then by the maximality of Q, we have |QAS’| = |A’|+|B’| < 2|B| < an?.
Hence, at the marginal cost of a slightly larger edit distance, we can replace S by S" and
assume that the partition [n] = U§=1 V; minimizes the number of bad patterns. To ease
the notation, we write S and A and B instead of S’; A’, and B’. In particular, we now
have |QAS| = |A| + |B| < an® and

|Al < |B| < an®. (6.6)

Finally, note that by the maximality of (), there exists some N so that we have
d(Q) = Ap — a whenever ¢(Q) = n > N (since such density can be achieved by a
maximal blow-up of P on n colors). This implies by (6.3) that d(S) = Ap —3a = Ap —¢.

Hence, by Proposition 5.4, we have
Vil = Bn (6.7)

for i € [t].

We claim that |A] = |B| = 0. Suppose, to the contrary, that |B| > 0. Given a
color z € [n], let degp(x) be the number of patterns in B containing x (note that we do not
count multiplicities, i.e., the pattern (z,z,y) counts only once). We define the mazimum
degree A(B) as the maximum of deggz(z) over x € [n]. We will first show that the palette

of bad patterns B does not have a large maximum degree.
Claim 6.3. A(B) < yn?.

Proof. Suppose that A(B) > yn? and let x € [n] such that degz(x) > yn?. Suppose,
without loss of generality, that z € V;. For every k € [t], we define a set B%) as follows.
Let BY := B. For k # 1, consider the partition [n] = (Ji_, v with VP = v
for i ¢ {1,k}, and ARNSR AN {z} as well as Vk(k) =V, u {x}. That is, [n] = |J'_, AR
the partition obtained by moving the color z from V; to Vj. Let S®) be the blow-up of P
with this partition structure, and let B®) = Q ~. S®) be the new set of bad patterns of Q)
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with respect to S®). Now we define
B® .= {ge B® . zeq}

for k € [t]. Recall that we chose S to minimize the number |B| = |@Q ~\ S|, so we have that
|B| < |BW| for k e [t]. Since |[B®| — |B| = |B®| — | B, we obtain that

BU| > [BY| = degp () > yn?. (6:8)

for k € [t].

Let R, be the non-degenerate rigid palette on M; colors obtained by Lemma 5.6 with
partition [M;] = | J'_, U;. For each t-tuple X = (p1,...,p:) € [, B¥ of patterns, we
define a palette RX on M; + 1 colors as follows. Let X = {pi,...,p;} be the palette
containing the t elements of X. Setting W; = V; n (C(X) \ {z}), we have the parti-
tioning C'(X) = (Ui, W;) v {z}. Consider an injective map ¢ : C(X) — [M; + 1] such
that «(W;) € U; and «(z) = My + 1. Such an embedding is always possible since |U;| > 3t
for i € [t] (Property (ii) of Lemma 5.6) and |W;| < 3t. Let ¢(X) be the palette with patterns
given by (p) for every p € X. The palette RX is defined as the union RX = R, U «(X).

Subclaim 6.4. RX e R.

Proof. Clearly, ¢(R¥) < M; + 3. We claim that RX is neither contained in a blow-up
of P nor in a blow-up of rev(P). First, note that it suffices to check the claim only for P.
Indeed, by Lemma 5.6, if P % rev(P), then the palette R, is not contained in a blow-up
of rev(P). Since R, € RX, this in particular implies that RX is not contained in a blow-up
of rev(P).

Now suppose for the sake of contradiction that RX is contained in a blow-up S’ of P
with partition structure U’;:l V!. In particular, R, < 5, and by the definition of rigidity,
there exists some automorphism h : [t] — [t] of P with U; <V}, for all i € [t]. We may
assume without loss of generality that h(i) = 4, i.e., that U; < V/ for i € [t]. Suppose that
the last color M; + 1 of R¥ is contained in V}/ for some index k € [t]. Let p;, be the k-th
pattern of X. From the fact that «(x) = M; + 1 € V/ and U; < V/, we obtain that the
patterns py and «(py) respect the same underlying structure in the blow-ups S*) and S’
of P, respectively. That is, p, € V&) x V¥ x V®) if and only if «(py) € V! x V{ x V. Since
we assumed that RX < S’, we have that in particular ¢(p;) € S’. This implies that p;, € S®,
which is a contradiction since p, € B{¥) = Q ~. S®). Therefore, R¥ is not contained in a
blow-up of P. O

Our goal now is to lower bound the cardinality of the set A = S ~ Q) to obtain a
contradiction. We say that an (injective) embedding f : RX — QuS is good if f(M;+1) = x
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and f(u(pr)) = pr for k € [t]. That is, if f embeds «(X) into X. Fix a pair (f, X)
where f is a good embedding. By Subclaim 6.4 and (6.4), we obtain that f(RX) ¢ Q.
Therefore, f(RX) n A # @, i.e., there exists a pattern in f(RX) that is a missing pattern.
Let £(f,X) be such a pattern. Since X < @, R¥ = R, u «(X), and f embeds ¢(X) into X
we must have that £(f, X) € f(R,) and so in particular = ¢ £(f, X). By property (i) of
Lemma 5.6, this implies that £(f, X) is a non-degenerate pattern (i.e., it has three distinct
colors). For this reason, we will only estimate the number of non-degenerate missing
patterns not containing .

For i € [t], let ¢;(X) be the number of distinct colors of U; present in the patterns of
(X)), and let ¢(X) = >t_, ¢;(X). Note that ¢(X) < 2t since each of the ¢ patterns in X
contains x. For a fixed X € H}Z:l Bg(ck), the number of good embeddings f is at least
the number of ways to select, for each i € [t], (|U;| — ¢;(X)) vertices from V; \ {X n V;}.
Therefore, for N large enough, the number of distinct pairs (f, X) can be lower bounded by

R CORR N

Xer 1B k) ! Xemzl Ba(vk)

My—2t t My —2t
=(5) s (5) . 69
k=1

where we use (6.7) and (6.8). Moreover, for a fixed non-degenerate missing pattern p not

containing z, the number of pairs (f, X) such that p € f(RX) is at most n*1=3 (since the

pattern p and the vertex x are fixed). Therefore, the number of missing patterns can be

Mi—2t
|A| = ~'n? (g) > an®

estimated by

by our choice of @ and 7 in (6.3). However, this contradicts (6.6), which concludes the

proof. O

By applying a similar argument as in the last claim, one can obtain the following.

Claim 6.5. For every bad pattern qp € B, there exist at least (3/4)™n? non-degenerate
missing patterns qa € A such that |C(qa) 0 C(gp)| = 1.

Proof. Fix qg = (a,b,c) € B. Let x : C(¢gg) — [t] be the t-coloring such that gp €
Vita) X V) X Vy()- Let R, be the non-degenerate rigid palette on M; colors obtained by
Lemma 5.6 with partition [M;] = | Ji_, U;. We define the palette R < [M; + c(¢5)]°
as follows. Let C(gg) = {x1,...,%qy)} (note that c(gp) can be either 2 or 3, and
that {a,b,c} = {x1,...,%cqy} as sets). For 1 < k < c(gp), let Ry be a palette with
color set [M;] u {M; + k} obtained from R, by blowing up a color in the set U,(y,)
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to form the new vertex M; + k. Let pg € {M; + 1,...,M; + c(qg)}* be the pattern
obtained by sending each color x; in the pattern g to the color M; + k. Then we
define R?5 = < ;(jf) Rk> U {pp} and remark that in this construction the only pattern

in R? which meets {M + 1,..., M + ¢(qp)} in more than one color is pp.
Subclaim 6.6. Ri5 € R.

Proof. As in the proof of Subclaim 6.4, it suffices to check that R?? is not contained
in a blow-up of P. Suppose, for the sake of contradiction, that R is contained in a
blow-up S’ of P with partition structure U§:1 V. This in particular implies that R, < S’
and Ry < S’ for each 1 < k < ¢(¢g). By the rigidity of R,, we may assume without
loss of generality that U; < V/ for i € [t]. Moreover, by property (iii) of Lemma 5.6, we
also obtain that M, + k € V;(wk). Thus, and since gp € Vy(q) X Vi) X Vi(e), We obtain
that pp € V) x V)4 % V} (.- This implies that (x(a), x(b), x(c)) € P, which contradicts
the fact that gp € B is a bad pattern. O

Our goal now is to lower bound the cardinality of the missing patterns A = S~ Q). We
define the subsets Ag, A; € A as

Ao :={qa € A: c(qa) =3, Clga) n Clgs) = 3},

Ay i={qa € A:c(ga) = 3,|C(qa) n Clgp)| = 1}.
That is, Ay consists of the non-degenerate missing patterns that are disjoint from ¢g,
and A; consists of those that intersect ¢p in exactly one color. We say that an embedding
f:RIB - QuS is good if f sends pp to gg. Let W be the set of all good embeddings f.
Fix f € U. By Subclaim 6.6 and (6.4), we obtain that f(R?%) & Q. Therefore, f(R8) must
contain a missing pattern £(f) € A. Since gp € B, we obtain that {(f) € f(RI \ {pg}).
By recalling that the only pattern in R%2 which meets C'(pg) in more than one color is pg,
this implies that &(f) € A9 U A;. Using (i) and (iii) of Lemma 5.6, the number of good
embeddings f can be lower bounded by

t ‘/; |U;| My
o f1(2)" (3)"

=1

where we use (6.7). We can split the argument into two cases:
Case 1: For at least |¥|/2 embeddings f, the pattern £(f) is in Ay.

For a pattern g4 € Ap, the number of f € ¥ such that g4 € f(R?) is at most n?173,

Therefore,

V| n® B\
‘A‘ = ’Ao‘ = 2nM1_3 = ? 5 > 0677,3,
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by our choice of « in (6.3). However, this contradicts (6.6).
Case 2: For at least |¥|/2 embeddings f, the pattern £(f) is in A;.

For a pattern g4 € A, the number of f € ¥ such that ¢4 € f(R?") is at most n™1~2

(since |C(ga) N C(gp)| =1 and ¢(ga) = 3). Therefore,

ol a2 g\ M,

This concludes the proof of the claim. 0

To finish the proof, we double count the number of pairs (¢4, qg) where gg € B is a bad
pattern and g4 € A is a non-degenerate missing pattern such that |C(ga) N C(gg)| = 1.
Fix g € B. By Claim 6.5, there exist at least (3/4)1n? patterns q4. Therefore, there are
at least (3/4)™n?|B| such pairs (g4, qg). On the other hand, for a fixed g4 € A, there are
at most 3A(B) patterns ¢p such that |C(ga) n C(gp)| = 1. Consequently, by Claim 6.3,
the number of pairs (ga, qg) is at most 3yn?|A|. Combining the two bounds yields, by
(6.3), that

B4y
41> YL 5 11,

which contradicts (6.6). Therefore |A| = |B| = 0 and consequently @ = S, concluding the

proof of the lemma. 0

We are now able to prove Theorem 2.6 as described in the outline at the beginning of

the section.

Proof of Theorem 2.6. We start by setting up the constants. Let M{L,, NI, al, and
Mg (P), 6o (P), Qg 5 ") be the constants obtained by applying Lemma 6.2 to the palettes P
and rev(P), respectively (Lemma 6.2 applies to rev(P) because, as remarked in Section 5, it
is reduced if and only if P is). Let Mg and Ng 1 be the constants obtained by applying Corol-
lary 6.1 to the palette P with a = £ min{af,, apy ™Y Set Ny := max{NF,, Ne5"™) Ne1}.

Consider the family of palettes R given by

R :={R: Ris a palette with ¢(R) < Ny
and R is not contained in a blow-up of P nor in a blow-up of rev(P)} .
For every R € R, by Lemma 4.1, there exists a 3-graph Fr such that R paints F and P

does not paint Fg. Let My := r}gla%{v(F r)} and note that this is well-defined since R is
€
finite. Since {Fr}rer S F(P) and by our choice of My, every palette in R paints a 3-graph
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in F(P)yy,. In other words, we have that
if Q is Fpy, (P)-deficient, then @ is R-free. (6.10)

Set M := max{ME,, M) My, My}. We claim that the family H := F(P), satisfies
the hypothesis of the theorem.

Let n € N and let @ € EX,a(n,#H) be a palette with ¢(Q) = n that maximizes the
number of patterns among all H-deficient palettes. Suppose first that n < Ny. By (6.10),
the palette @ is R-free, and then the definition of R and ¢(Q) < Ny entail that @ is
contained in a blow-up of P or in a blow-up of rev(P) and so ) is among the palettes
which are considered in the right-hand side of (2.4). Hence, we may assume that n > Ny.
Now, Corollary 6.1 implies that @ is a-close to being contained in a blow-up of P of rev(P).
Therefore, by Lemma 6.2, @ is a blow-up of P or rev(P). U

§7 PROOF OF MAIN THEOREM

In this section we prove Theorem 1.1. As mentioned before, it essentially follows from
Theorem 2.6 and the fact that m,(F) = 7. (F) holds for finite families. This equality
in turn follows from the work in [31] (which is implicit in [34]) and [24]. To expand on
this argument, we recall the notion of reduced hypergraphs from [34]. Essentially, reduced

hypergraphs capture the setting that one arrives at after applying hypergraph regularity.
Definition 7.1. A reduced 3-graph is a triple &/ = (I, {P"},icr», {@"*},51c19)) consisting

of a finite index set I, a collection of pairwise disjoint sets of vertices {P¥ Vijer», and a
collection of 3-partite 3-graphs {</"*} 1 such that for every ijk € I®) the vertex
classes of @/ are P, P* and P*. If d € [0,1] and e(a/*) = d|P¥||P*||P*| holds for
all ijk e I® we say that </ is (d,.)-dense.

To ease the notation, we often simply write a reduced 3-graph as & = (I, P¥, AY%). By
the hypergraph embedding lemma, in order to find a copy of a 3-graph F' in the original
host 3-graph H, it is sufficient to find a “reduced map” of F' to a suitable reduced 3-graph.

This is made formal with the following definition.

Definition 7.2. A reduced map from a 3-graph F to a reduced 3-graph o = (I, P¥, A*)
is a pair (A, @) such that

(1) A\: V(F) — I and ¢: OF — |, c; P, where 0F denotes the set of all pairs of
vertices covered by an edge of F';
(ii) if uwv € OF, then A(u) # A(v) and @(uv) € PMNWA®);
(iii) if www € E(F), then o(uv)p(uw)p(vw) € E(e/ N WAWAW)),
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If some such reduced map exists, we say that </ contains a reduced image of F, and
otherwise <7 is called F'-free.

Given a family F of 3-graphs we say that a reduced 3-graph &7 is F-free if it is F-free
for all F' e F. One can now define the Turan density of a family of 3-graphs with respect
to reduced 3-graphs.

Definition 7.3. If F is a family of 3-graphs, then

m4(F) = sup{d € [0,1]: For every m € N there is a (d,..)-dense,

F-free, reduced 3-graph with an index set of size m} .

The key behind almost all the progress on the uniform Turan problem in the past decade

is that an argument based on the hypergraph regularity method yields the following result.

Theorem 7.4 (Theorem 3.3 in [31], implicit in [34]). If F is a finite family of 3-graphs,
then

For the next lemma, we need to set up the following notation. Let & = (U, P¥, a7iik)
be a reduced 3-graph and let S¥ < P¥ be multisets, for all ij € U®. For all ij € U®,
set (89) = {(z,r) : . € 8Y,r € [{(x)]}, where ¢(x) is the multiplicity of z in §¥. Next,
for all ijk € U®), let (/%) be the 3-partite 3-graph with vertex classes (S7), (S™*),
and (S%)" and edge set

{(z,a)(y,0)(z,¢) : wyz € 7 a e [U(x)],be [Ly)], ce [((2)]}.

The following was a crucial technical lemma used in [24], to obtain a palette from a

reduced 3-graph with the appropriate dependence on £ and m.

Lemma 7.5. For all ¢ > 0 there is some s € IN such that for all m € IN there is
some N € N with the following property. Every reduced 3-graph o/ = ([N], PY, o/ %) with
density d € [0,1] contains an index subset U < [N] with |[U| = m and multisets S < PY,
for all ij € U®, such that each |S¥| = s and the reduced 3-graph (U, (SY), (a/*)")

is (d — e, ) -dense.

By applying Theorem 7.4, the following theorem suffices to complete the proof of
Theorem 1.1.

Theorem 7.6. Let P be a palette. Then there exists a finite family H of 3-graphs so
that m7%(H) = Ap.
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Proof. If P is not reduced, there exists a reduced palette P’ < P with Apr = Ap that we
could consider instead, so we may assume that P is reduced. Then Theorem 2.6 yields a
finite family H such that P is H-deficient and for all n € N

eXpal(n, H) = max{e(Q) : Q is a blow-up of P and ¢(Q) = n}. (7.1)

We will show that for every e > 0 we have Ap —e < m4(H) < Ap +2¢e. Solet ¢ > 0
be given. First we show that Ap —e < m4(H). By (2.3), there is some ng such that for
every n € IN with n > ng there is a palette () with n colors which is a blow-up of P, attains
the maximum on the right-hand side in (7.1), and satisfies 42

from (2.2), Fact 2.3, and Theorem 7.4 that

> Ap — . Now it follows

Next we show that 74(H) — 2¢ < Ap. First we observe that for all s € N we have
exXpal(s, H)

53
Indeed, by (7.1) and (2.2), there is a blow-up of @ with ¢(Q) = s such that exya (s, H)/s* =
d(Q) < Ag. Since @ is a blow-up of P, Observation 5.2 entails that Ag < Ap, and (7.2)

follows.

< Ap. (7.2)

Now let m be the maximum number of vertices of any H € H and let s € IN be
given by applying Lemma 7.5 with e. Next, let R be the Ramsey number Ry(m;2%")
(i.e., R is the smallest integer such that any coloring of the 3-edges of KI(%S) with 2¢°
colors contains a monochromatic K()). Finally, let N € IN be as guaranteed by (the
conclusion of) Lemma 7.5 applied to R here instead of m there. Let & = ([N], PY, o7/)
be a (m4(H)—e,)-dense H-free reduced 3-graph. The conclusion of Lemma 7.5 provides an
index subset U < [N] with |U| > R and multisets S¥ < PV with |S¥| = s, for all ij € U®),
such that the reduced 3-graph (U, (S7Y, (/%)) is (724 (H) — 2¢,..)-dense. For all ij € U
we identify (S¥)’ (arbitrarily) with [s]. Then each (@/%*)’ can be viewed as one of the s3
possible subsets of [s]?. This yields a 253—coloring of U®), whence our choice of R provides
an index set U’ < U with |U’| = m and a subset G' < [s]? so that for each ijk e (U')®)
with i < j < k, (/%) corresponds to G (under the fixed identifications of S¥, S,
and S/* with [s]). Now G can naturally be interpreted as a palette G’ with C'(G") = [s]
and F(G') = G. Since e((«7*)') = (714(H) — 2¢)s3, it follows that d(G') > 74(H) — 2e.
Further, it can easily be checked that if G’ paints any H € H, this would entail a reduced
image of H in (U, (S§%7)', («/¥*)") and thus in 7. Hence, & being H-free, we know that G’
is ‘H-deficient. Therefore, using (7.2), we get
e(G) - eXpal(s, H)

3 <

2 < Ap.
S S

T (H) — 2 <
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This concludes the proof of the theorem. O

§8 CONCLUDING REMARKS

In this work, we obtain that the Lagrangian of any finite palette is attained as the
uniform Turén density of a finite family of 3-graphs. A consequence of this result combined
with [24] is that

Apal - H.‘.,ﬁn - H.‘.,OO - /_\pal . (81)

It would be interesting to determine which of these inclusions are strict. In addition, if II.,
denotes the set of uniform Turdn densities of single 3-graphs, is it true that II. < IL. 4, &
II. 57 In [30], it was proved that the set of Turan densities of possibly infinite families

g’é) is uncountable and closed for k£ > 3. One could ask whether similar

of k-graphs, II
statements hold for II. ,,. We remark that a direct application of the methods used in [30]
does not seem to work here.

We say that d € [0,1) is a jump in a set X < [0, 1] if there exists some € > 0 such that
(d,d +¢) n X = @&. Erdés [14] showed that for every k > 2, 0 is a jump in ¥ . On
the other hand, Frankl and Rodl [15] proved that for every k > 3 there is some d € [0, 1)
that is not a jump in Hgéc), disproving the famous Erdos jumping conjecture. For the
uniform Turdn density, Reiher, R6dl and Schacht [34] showed that 0 is a jump for II. 4.
A consequence of our work is that every non-jump in Héi)
(see [21]).

Note that the palettes considered here, as well as in [21] and [24], have finitely many

yields a non-jump in II; g,

colors. Ome might ask what the situation looks like for a (countably) infinite palette,
which is a pair P = (C, E') consisting of an infinite set of colors C' and an infinite set of
patterns £ < C3.

To define the Lagrangian of an infinite palette, note that the Lagrangian of a (finite)
hypergraph F is (up to scaling) simply the maximum edge density a blow-up of F' can have.

Following this spirit, a reasonable way to define the “Lagrangian” of an infinite palette P is

Ap =sup{d € [0,1] : for every n > 0 and n € IN, there is
a (d,n)-dense 3-graph H with v(H) = n such that P paints H}.

From [21] it follows that for finite palettes this definition is equivalent to our previous
definition. Now one can ask whether Theorem 1.1 still holds for every infinite palette P.
Lamaison and Wu [25] announced that there exists a 3-graph F' such that there is no
finite palette P that is F-deficient and satisfies Ap = 7.(F). Note that this means
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that IL. gy & Apa. Setting Apao = {Ap : P is a finite or infinite palette}, it would be

curious if in fact any of the sets Apai o, IL: fn, and II. o, are equal.
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(1) m<tandtl <M,

(2) all but E(0)t3 of (i1,12,13) € [t]*> have the ordered triple (V;,, Vi,, Vi,) E(0)-regular,

(8) for all (i1,19,13) € [t]?, all but E()C® of (1,72, J3) € [(]* have the ordered triple
(Virjrs Visjo» Vis.js) E(t)-regular, and

(4) for all but E(0)t3 of (iy,19,13) € [t]3, all but E(0) of (j1, j2,J3) € [(]* have
|A(Visg1s Vig g Viaga) — d(Viy, Viy, Vi )| < €(0).

The relationship between our Theorem 3.7, Corollary 3.8, and Theorem A.1 is entirely
analogous to those found in [2] between Lemma 3.3 (the traditional Szemerédi graph
regularity lemma), Lemma 4.1, and Corollary 4.2 there. Our proofs use the same strategies.

Let us begin now with the details of Theorem 3.7. We follow closely the probabilistic
techniques presented in [4], working here with palettes in place of graphs. For ease of
notation we will still refer to colors as vertices, and patterns as edges on these vertices.
We are interested in partitions of C(Q), and we let n = ¢(Q) throughout. We will,
in intermediate steps, allow our equipartitions to include a small set Vj of exceptional
vertices. As part of a partition of C'(Q) we consider Vj as composed of singleton vertices,
sothat B=Uyw U w...wUyrefines A =Vyu Vi w...uV; (denoted B < A) so long as,
for each i € [t], V; is obtained exactly as the union of some U; together with some vertices
from Uy, and Vi < Uy. Recalling Definition 3.4, we say that a partition A = VouViw... vV,
is e-regular if for all but t® of (iy,is,13) € [t]?, the ordered triple (V;,, Vi,, Vi,) is e-regular.
When we index over V' € A for a partition A, we mean to take one term for each part of A,

denoted V. With these notions in mind we can now define the energy q.

Definition A.2. Suppose that Vi, V2, Vs € C(Q) with ¢(Q) = n. Then
Vvl

n3

q(Vi, Vo, V3) d?(Vy, Vo, Vs) .

If Ay, As, As are partitions of C(Q), we set
q(A17A27-’43) = Z C_I(VMVQ,VE’,)
VieAy,VaeAs,V3eA3
We will use q(A) to refer to q(A, A, A) along a single partition.
Since q(V1, Va, V3) < % it is immediate that ¢(A;, Ay, A3) € [0,1]. The following

technical lemma captures two more important properties we will require of the function q.

Lemma A.3. [f 81 < Al,Bg < .Az, and 63 < .A3 then q(Bl,Bg,Bg) = CI(.A1,A2,.A3>.
Furthermore, if V1, Vo, V3 € C(Q) are so that (V1,Va, V3) is not e-reqular, then there are
partitions Vi =V}  VE Vo =V w V2 Vs = Vi v V2 so that

gV o V2V 0 V2, Vg w V) = q(Vi, Vo, Vs) + g
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Proof. For the first part, it suffices to check the case when A; = Vi, Ay = V5, A3 = V3
consist of a single set each, since any B; can be obtained by successive refinement in this way.
In this case we define a random variable Z as follows. Select vertices x1 € Vi, x5 € V5,23 € V3
uniformly at random and let Uy € By, Uy € By, Us € B3 be the unique parts of their respective
partitions so that x1 € Uy, xo € Uy, x5 € Us before setting Z = d(Uy, Uy, Us). We can directly

compute both the expectation

|U©||Ua||Us]
E(Z) - 7d(U17U2,U3)
U16817U§32,U3€B3 |‘/1||‘/2||‘/3|
_ e(Ur, Uz, Us)
U1eB1,U2eB2,U3eB3 H/lH‘/ZH‘/?)’
=d(V1, Va2, V3)
and the second moment
|UL||Ua||Us]
]E(ZQ) - oo (Un, Uz, Us)
U1€Bl,U;B2,U3€B3 |‘/1H‘/2H‘/3‘
n’ U, ||Us||U
- W %dZ(Ul,UQ,Ug)
| 1H 2“ 3|U16817U2€BQ,U3683 n
3
=———q(B1,B,,B3).
VvV 4B B B

Combining these yields
3

n
0 < Var(Z) = E(Z%) - E(Z)* = [VA[[Val[V3|

(Q<Bl7 627 83) - q(‘/la ‘/27 ‘/3)>

as needed.

Now we proceed to the ‘furthermore’ part. Let V! be witness sets to the failure
of e-regularity and V;* their complements, so that |V;'| > e|Vi| but [d(V]', V3 V3! —
d(V1,Va,V3)| = e. Let Z be the random variable defined above on the new partition
obtained of Vi, V5, V3, where B; = V;! v V2. Then Chebyshev’s inequality shows

VIV VA Var(Z)
3<M<Pr Z—-E(Z)|=z¢) <

A e =

and we are done, having computed Var(Z) above. O

The furthermore part of the previous lemma shows that irregular triples can be refined to
increase the value of ¢ by a small amount. Next we will show that if A has many irregular
triples, by refining each we can increment g by a small constant depending only on &, while

still controlling the order of the partitions we create.
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Lemma A.4. Suppose A is an equipartition of C(Q) into Vo w Vi... vV, and t = 6.
If there are et® many (iy,142,13) € [t]> with the ordered triple (Vi,,Vi,, Vi,) failing to be e-
reqular and |Vo| < en,then there exists a refinement B = Uy w Uy ... w U, of A with q(B) =
q(A) + =, [Uo| < [Vo| + & and € < 222",

Proof. Any time that V; appears as part of an irregular triple (in first, second, or third
position) with distinct indices, we will apply Lemma A.3 to partition V; into V' and V2.
Formally, for every i € [ ] and (i1, i2,143) € [t]* with ¢ € {4y, 4,13} and 2'1, ig, 13 all distinct,
we define a partition V(“ iniz) OF Vie 16 (Vi Vi, Vi) is e-regular we let V (i1i2,i5) D€ the trivial
partition consisting of the single set V;, and if (V;,, V,Q, Vis) is not e-regular we let V“ in.i3)
be the partition furnished by Lemma A.3. Each V(ilﬂ.g’is) consists of either 1 or 2 sets, so
for fixed i the mutual refinement consists of at most 23" parts. Let B be the partition
obtained by mutually refining each V; in this manner, so that (since there at least et

[

irregular triples and at most £3t? < §t3 of them have a repeated index)

3 €5 L
q(B) = q(A) + 2t veR

At this point B has incremented ¢ as desired; all that remains is to balance the sizes of
the member sets. B has at most 23" parts, say Uj, together with the exceptional set Vj
remaining from A. Let B be obtained from B by taking, from each [7]-, a maximal disjoint

family of sets of size say U for 0 < k < K, and adding all of the leftover vertices

t23t22t’
to Vg to form Uy. Formally,

UOZ%U (UU]‘\ ( U Uj,k>> .
J 1<k<K;

The first part of Lemma A.3 gives ¢(B) = q(B) = q(A) + ?66. Overcounting the number of

vertices discarded gives |Up| < |Vp| + 2, and flattening pairs (j, k) to a single index ¢ gives

2t
an equipartition B with at most 2123t* 2'members, as needed. 0

Finally, the following lemma will be used to redistribute the exceptional set Vj amongst

the other classes of the equipartition without destroying regularity.

Lemma A.5. For all ¢ > 0 there exists v > 0 so that the following holds. Suppose
that (Vi,Va, V3) is e-regular in C(Q) and that Xy, Xo, X3 S C(Q) with |X;| < v|Vi|.
Then (Vi U X1, Vo U Xo, V3 U X3) is 2e-regular.

Proof. We may assume that v < ¢; we will verify directly that (V; u X1, Vo U Xo, V3 U X3)
is 2e-regular. Suppose that W; = (V; u X;) with |W;| = 2¢|V; u X;|, and set W)Y := W; 0V,
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with leftovers WX := W, ~\ W}Y. Then |[W}| = |W;| —v|Vi| = €|Vj|, so by the e-regularity
of (Vi, Vo, V3) it follows that
AW, Wy W) = d(Va, Va, Vs)| < e
Next observe the simple subset
e(Vi,V2,V3) <e(Viu X1, Va U Xp, V3 U X3)
and union bounds
e(Viu X1, Vau Xy, Vau Xs) <e(Vi,Vy, V) + | X4||Va U Xo||Vs U X3
+ V1 u Xq|| X3||Vs U X5
+ V1 u Xq||Va U Xo|| X5 .
Dividing through by |V; U Xj||Va u X5||V3 U X3] yields

1
TtV Ve Vo) < d(Viv Xi, Va0 Xa, Vau Xa) < d(V3, Vi, Vi) + 3
v
and repeating the same argument with ;" in place of V; and W in place of X; gives
1
(1+72)3

Then for v taken small enough as a function of ¢, it follows that

AWY WY WYY < d(Wy, Wa, Wy) < d(WY , WY, WY) + 3%.

d(Va, Va, V) — d(Vi U X1, Va 0 X, Vs U Xg)| < 2/2
and
|d(Wy, Wy, W) —d(WY Wy W) <e/2.
Finally the triangle inequality shows
|d(Wy, Wo, W3) —d(Vy u X1, Vo u Xo, VU X3)| < 2¢
as needed. U

Proof of Theorem 3.7. We directly prove the ‘more generally’ part of the Theorem, which
implies the first part by taking an arbitrary equipartition of m parts. Let v be the result
of Lemma A.5 applied to €. By increasing the value of m we may assume that [;—2] 2%,1 <
min (e, 7/4) and m > 6 - this suffices for the general case. Inductively define a sequence ¢, =
o2m and t;,1 = 2t;2%%2%. We will show that taking M = N = t[ 1] suffices.

Indeed, let A° be the initial equipartition with s, = m parts and V' = &. Iterate
the following process, beginning with i = 0. If A° is not e-regular, apply Lemma A .4 to
obtain a refinement A" with ¢(A™*!) = ¢(A%) + %, so that [V§ < |V{| + 5% and A"
has s;11 < t;41 parts (since the inductive definition of ¢; matches the output of Lemma A.4).
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Since ¢(-) € [0,1], it follows that in [1¢] steps we must find some A7 which is e-regular,

with s < M parts, at which point our iterative process halts.

We can estimate the size of the exceptional set as

1 1
V{| \n([ 6} 2m> <en.

All that remains is to redistribute Voj amongst the other parts of the equipartition. By

. J
evenly distributing the vertices of Vi no part will receive more than 2@ < 7y many vertices

with 2|‘|/V‘|/ ® < 7 so that Lemma A.5 guarantees the 2e-regularity of our equipartition.
Applying the above proof to ¢’ = § would provide e-regularity; we leave the proof as
written for readability. U

Next we show, as done in [2], how to iterate Theorem 3.7 and then randomize to obtain
Corollary 3.8. To do so we will require another property of ¢q. If B < A it follows from
Lemma A.3 that ¢(B) = q(A); we will show that if ¢(B) remains very close to ¢(.A), then

most of the densities d found across parts of B are very close to those found in A.

Lemma A.6. Suppose equipartitions A = {V; : i € [t]} and refinement B = {V;; :
i € [k],j € [€]} have q(B) — q(A) < €*/64. Then for all but et® (i1,1is,13) € [t]*, all
but f? (j17j27j3) € [g]g have |d(‘/i1vv;2>‘/;3) - d<%17j17‘/;27j27‘/i37j3)| SE.

Proof. First fix (i1, is,13) € [t]* and let Z be the random variable defined in Lemma A.3, over
the refinement given by B of the sets V;,, Vi, Vi,. If L0v2:) < [£]3 are those (ji, ja, j3) € [¢]°
with |d<v217 V;lzv ‘/;3) - d(vll,ha ‘/12,127 ‘/13,13)‘ g, and |L “722723)| = 563 then

1\? Vi i Visia Vi s Var(Z)
863 <) < 11,71 12,73 13,73 < Pr(|Z o ]E(Z)| > 5) <
T 2 TAALA =

(j1,J2,j3)eLi1:12:3)

and therefore, recalling we calculated Var(Z) in Lemma A.3,

£ Vil [V |V;
U 11,1 U 12,2 U ‘/;37j3)_ (‘/;17‘/;27‘/) 8|HnsH3|‘

Jr€le J2€[4] Js€lf]

Next define I < [t]® as those (iy,1iy,43) € t° for which |L1#2%)| > /3 and suppose for

contradiction that |I| > t3. Then

q(B)_q(‘A) = Z U ‘/;1317 U 12,527 U ‘/;3J3 - ‘/;17‘/22"/13)

(i17i27i3)€—’ Jiell ]26[5] Jaell
e |v“||vmr|v13\
8 n3 64
a contradiction. O

We can now iterate 3.7 to prove Theorem A.1.
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Proof of Theorem A.1. Given any m € N and ¢ > 0, let M3 7(m,e) and N37(m,¢e) denote
the output of Theorem 3.7. Let £ and m be as in the Theorem statement, and let ¢ = £(0).
Set My = M3 7(m,e) and Ny = N3-(m,e) before inductively defining

E(Mil))
M; = Ms. (Mi_l, SRy
M3

()

E(MH))
N; = Ny (Mg, =2
”( M

)

If we set s = [S—ﬂ + 1, then we claim that M = M,, N = N, suffices.

First let A° be an e-regular equipartition of order ¢y € [m, My], provided by Theorem 3.7
and then perform the following iterative procedure, starting with ¢ = 0 (where t_; =
0 for convenience). Given A’ with order t; € [t;_1, M;] we may apply Theorem 3.7

(M )
M3

again to obtain a refinement A**! which is -regular with order t;,1 € [t;, M;;1]. In

particular, at most £Mi=1) L3 of (iy, i, i3) € [t:]® have (Vi,, Vi, Vi, ) fail to be €(M;_;)-regular,
since 8(]&41 1) < 8(MZ_ ) Let i be the first i so that ¢(A*) — (A1) < 6—4, and set A = A;_

and B zzt/lli, with ¢ = ¢;_1 and ¢/ = t;. It remains to check items (7)-(4).

Part (1) follows immediately by recalling that the t; are increasing, so m < tg <
t < tl < M. Part (2) also follows immediately using the monotonicity of £, since all
but (S(Mii*;))[ti B < EO)[tia]? of (i1, da, d5) € [tie ]3have (Vi,Vi,, Vi,) as £(0)-regular. For
Part (3), we have that the partition 5 has at most (tﬁ) pairs ((i1,12,13), (J1,72,J3)) €
([¢]2, [€)?) with (Vi iy, Visin» Vi js) failing to be 5( ;_1)-regular. Since %(%)3
E(M;_1)03, there is certainly no (i1, 19, 43) € [t]* with more than £(¢)¢* many (j1, j2, J3) € [¢]?
with (Vi, j1, Vis.ju» Vis.js) failing to be E(M;)-regular. Finally, Part (4) follows by direct

application of Lemma A.6.
O

Finally we may sample from the refinement B of A to find the model vertex sets we

require.

Proof of Corollary 3.8. We apply Theorem A.1 with &'(r) = min{&(r), g5, £} and m to
obtain M4 and N4 ; and claim that M = M, 1, N = N41, and 6 = ﬁ suffices. To that
end, let () be any palette with at least /N colors, so that Theorem A.1 gives B refining A so
that Parts (1)-(4) hold. For each i € [t] select j; € [¢], independently uniformly at random,
and set U; = V; j,. We now show that parts (¢)-(iv) are satisfied with positive probability.
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Parts (¢) and (4i) are immediate and always hold. For Part (),

P ((Ui,, U, Uy,) is not e-regular for some (iy, iz, 43) € [t]*) < °€'(t) <

A

by applying the union bound and Part (8) of Theorem A.l. Meanwhile,

B[ (i1, iz, i) € [(1° with |d(Uy, Uiy, Us,) = d(Viy, Vi, Vi) > €]) < S8 + of°
by Part (4 ) of A.1, and therefore the probability that there are more than et?® (iy, iz, i3) € [¢]?
with |d(U;,, Us,, Us,) — d(V;,, Viy, Vig )| = € cannot exceed §. Then with probability at least
both Part (i) and (iv) are satisfied as well, so there ex1sts such a choice of U; and we are

done. O
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