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TURAN DENSITY OF CLIQUES OF ORDER FIVE IN 3-UNIFORM
HYPERGRAPHS WITH QUASIRANDOM LINKS

SOREN BERGER, SIMON PIGA, CHRISTIAN REIHER, VOJTECH RODL,
AND MATHIAS SCHACHT

ABSTRACT. We show that 3-uniform hypergraphs with the property that all vertices have
a quasirandom link graph with density bigger than 1/3 contain a clique on five vertices.

This result is asymptotically best possible.

§1. INTRODUCTION

We study extremal problems for 3-uniform hypergraphs and here, unless stated oth-
erwise, a hypergraph will always be 3-uniform. Recall that given an integer n and a
hypergraph F' the extremal number ex(n, F') is the maximum number of hyperedges that
an n-vertex hypergraph can have without containing a copy of F. It is well known that
the sequence ex(n, F')/(};) converges and the limit defines the Turdn density m(F). Deter-
mining 7(F') is a central open problem in extremal combinatorics. In fact, even the case
when F is a clique on four vertices is still unresolved and known as the 5/9-conjecture of
Turén.

Erdés and Sés [4] suggested a variation restricting the problem only to those F-free
hypergraphs that are uniformly dense among large sets of vertices. More precisely, given
a hypergraph F', Erdés and Sés asked for the supremum d € [0, 1] such that there exist
arbitrarily large F-free hypergraphs H = (V, E) for which every linear sized subset of
the vertices induces a hypergraph of density at least d. Extremal results for uniformly
dense hypergraphs in that context were studied in [2,5,6,9,12,13]. For hypergraphs
there are several other notions of “uniform density” that are closely related to the theory
of quasirandom hypergraphs (see, e.g., [1,16]) and corresponding extremal results were
studied in [10,11, 14, 15]. Here, we shall focus on the following notion.

Definition 1.1. For a hypergraph H = (V, E) and reals d € [0, 1], n > 0, we say that H
is (n,d,A)-dense if for all P, Q <V x V we have

ea(P.Q) = |{ (0:9),4,2) € Ku(P.Q): {9, 2} € B} > d[Ka(P,Q) =V, (1)
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where Ko(P,Q) = {((z,v),(V,2)) e Px Q: y = y'}.

For a fixed hypergraph F', we define the corresponding Turan density

7a(F') = sup{d € [0, 1]: for every n > 0 and n € N there exists an F-free,
(n,d,a)-dense hypergraph with at least n vertices}. (1.2)

In [14] the last three authors obtained a general upper bound for m, (K f’)), which turned
out to be best possible for all £ < 16 except for £ =5, 9, and 10.

Theorem 1.2. For every integer t = 2 we have

m\(Ké?)) < 15:—2
Moreover, we have
0 = ma(KY),
L<ma(K9) < b = m(E{) = - = m(&),
and L <my(KP) < ma(KD) < 2 = ma(K) = - = ma(KD) O

Here we close the gap for m, (K, é?’)) and show that the lower bound is best possible.

Theorem 1.3 (Main result). We have that

Theorem 1.3 has a consequence for hypergraphs with quasirandom links. For a hyper-
graph H = (V| E) the link graph Ly (x) of a vertex x is defined to be the graph with vertex
set V and edge set {yz e V@®: xyz e E(H)}. Recall that for given d € [0,1] and § > 0 a
graph G = (V, E) is said to be (9, d)-quasirandom if for every subset of vertices X < V
the number of edges e(X) inside X satisfies

X 2
‘e(X) — d% < S|V|2.

One can check that if all the vertices of a hypergraph H have a (0, d)-quasirandom link
graph, then H is (f(9),d,A)-dense, where f(§) — 0 as § — 0. In fact, such hyper-
graphs even satisfy in addition a matching upper bound for e,(P, @) in (1.1) and, hence,
having quasirandom links is a stronger property. However, the lower bound construction
for WA(Ké?’)) given below has quasirandom links with density 1/3 and, therefore, Theo-
rem 1.3 yields an asymptotically optimal result for such hypergraphs.

Example 1.4. For a map ¢: V) — Z/37 we define the hypergraph H, = (V, E) by
ryz € FE — U(zy) + Y(xz) +¢¥(zy) =1 (mod 3). (1.3)
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Observe that for any set of five different vertices U = {u, us, us, u4, us} double counting
vields the identity
Do (W) + lunm) +ugu)) =3 35 Wluw).
wjujupel () wu;eU2)

Since the second sum is zero modulo 3, at least one of the ten triples in the first sum fails
to satisty (1.3). Consequently, Hy is K, ég)-free for every map 1.

Moreover, if ¢ is chosen uniformly at random, then following the lines of the proof
of [14, Proposition 13.1] shows that for every fixed § > 0 and sufficiently large |V | with
high probability the hypergraph H, has the property that all link graphs are (9,1/3)-

quasirandom.

Summarising the discussion above we arrive at the following corollary, which in light
of Example 1.4 is asymptotically best possible.

Corollary 1.5. For every € > 0 there exist 6 > 0 and an integer ng such that every
hypergraph on at least ng vertices all of whose link graphs are (§,1/3 + ¢)-quasirandom
contains a copy of Kég). O

The proof of Theorem 1.3 is based on the regularity method for hypergraphs. More
precisely, we shall address the corresponding problem for reduced hypergraphs A (see
Proposition 2.4). The proof of Proposition 2.4 is based on a further reduction to the
case, when there exists an underlying bicolouring of the pairs V® which corresponds to
a bicolouring of the vertices in the reduced hypergraph A (see Proposition 2.6). Finally,
we show that in the context of Theorem 1.3 such bicoloured reduced hypergraphs yield
a K ég) (see Proposition 2.7). Sections 4 and 5 are devoted to the proofs of Propositions 2.6
and 2.7.

§2. REDUCED HYPERGRAPHS AND BICOLOURINGS

Similar as in [11-14] the proof of Theorem 1.3 utilises the regularity method for hy-
pergraphs. This allows us to transfer the problem to an extremal problem for reduced
hypergraphs, which play a similar role for hypergraphs as reduced graphs in applications
of Szemerédi’s regularity lemma for graphs.

Definition 2.1. Given a set of indices I and pairwise disjoint, non-empty sets of ver-
tices PY for every pair of indices ij € I®®, let for every triple of distinct indices ijk € I
a tripartite hypergraph A“* with vertex classes P, P* and P’* be given.
We call the (';')-partjte hypergraph A defined by
VA = ) P and  EA)= | E(AT)
ijel(®) ijkel(®)

a reduced hypergraph with index set I. Moreover, we say A has vertex classes P and
constituents AV,
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In this work the index set I will often be an ordered set and we may assume I < IN.
When we say that a reduced hypergraph is sufficiently large, we mean that its index set
is sufficiently large. Theorem 1.3 concerns A-dense and Ks-free hypergraphs H and next
we define the corresponding properties in the context of reduced hypergraphs.

Definition 2.2. For d € [0,1] we say that a reduced hypergraph A with index set I
is (d,A)-dense, if for every ijk € I®® and all vertices P7 € PY and P* € P* we have

d(P7,P*) = [{P* e pik. pUpkpite (AT} = d|Pi*|.

Definition 2.3. We say a reduced hypergraph A with index set I supports a clique K, f’)

if there are an (-element subset J < I and vertices P € PY for every ij € J@® such that
PIP* Pt e B(ATF)
for all ijke J®),

With these concepts at hand, it follows from [10, Theorem 3.3] that the upper bound in
Theorem 1.3 is a direct consequence of the following statement for reduced hypergraphs.

Proposition 2.4. For every e > 0 every sufficiently large (% + 5,1\) -dense reduced hyper-

graph A supports a K, 5(3).

The proof of Proposition 2.4 proceeds by contradiction, so we assume that for some ¢ > 0
there are (% + &, A)-dense reduced hypergraphs of unbounded size that do not support K, 5(3).
This motivates the following notion.

Definition 2.5. For ¢ > 0 we say a reduced hypergraph A is e-wicked if it is (% +&,A)-

dense and fails to support a Kég).

Proposition 2.4 asserts that wicked reduced hypergraphs cannot have too many indices
and the proof is divided into two main parts. First we reduce the problem to the case in
which the reduced hypergraph A on some index set I can be bicoloured. By this we mean
that there is a colouring : V(A) — {red, blue} of the vertices such that for every ij € I
we have

¢ Hred) NP9 # @ and ¢ (blue) NP7 # @ (2.1)

and there are no hyperedges in A with all three vertices of the same colour. Given such a
colouring ¢, we define the minimum monochromatic codegree density of A and ¢ by

d(P%, Pk)

e

The following proposition reduces Proposition 2.4 to bicoloured reduced hypergraphs.

T = min min
2("47 SO) ijkel®

. PUe Py, P*eP* and p(PY) = so(P““)} - (22)

Proposition 2.6. Given ¢ > 0 and t € IN, let A be a sufficiently large e-wicked reduced
hypergraph. There exist a reduced hypergraph A, with index set of size at least t not
supporting a Ké?’) and a bicolouring ¢ of A, such that (A, p) = % + 5
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For the proof of Proposition 2.6 we mainly analyse holes in wicked reduced hypergraphs,
i.e., subsets of vertices inducing very few edges. It turns out that we can find two “large”
but almost disjoint holes such that most edges with two vertices in one of the holes have
their third vertex in the other hole. This configuration can then can be used to define an
auxiliary reduced hypergraph A, admitting an appropriate colouring ¢ (see Section 4).

The next proposition completes the proof of Proposition 2.4 by contradicting the con-
clusion of Proposition 2.6, thus showing that large wicked hypergraphs indeed do not

exist.

Proposition 2.7. For every e > 0 every sufficiently large bicoloured reduced hypergraph A
with T5(A, ) = 1 + € supports a Ké?’).

The proof of Proposition 2.7 is deferred to Section 5.

§3. PRELIMINARIES

In this section we introduce some necessary definitions and properties for reduced hy-
pergraphs.

3.1. Transversals and cherries. We start with the following notion for reduced hyper-
graphs A with index set I. For J < I we refer to a set of vertices Q(J) = {Q¥V: ij € J?)}
with Q¥ € PV for all ij € J? as a J-transversal. Similarly, for two disjoint subsets of
indices K, L < I we say that Q(K,L) = {Q": (k,f) € K x L} is a (K, L)-transversal
when Q% € P* for all (k,f) € K x L. Transversals will always be denoted by calligraphic
capital letters and the vertices they contain are denoted by the corresponding Roman
capital letters (equipped with a pair indices as superscript).

For subsets J, < J, K, < K, and L, < L we refer to the transversals Q(J,) < Q(J) and
Q(K,, L,) € Q(K, L) (defined in the obvious way) as restricted transversals. Whenever
the sets J, K, L < I are clear from the context, we may omit them and write transversal
to refer to J-transversals or to (K, L)-transversals.

Let us recall that we are often assuming implicitly that our index sets are accompanied
by a distinguished linear order denoted by <. Since we are working with A-dense reduced
hypergraphs (see Definition 2.2), pairs of vertices sharing one index will play an important
role. More precisely, given indices ijk € I®) with i < j < k and given vertices P € P,
P* e Pk and P* € PI* we say that the ordered pair (P¥, P%*) is a left cherry, the
ordered pair (P*  Pi*) is a right cherry, and the ordered pair (P¥, P7¥) is a middle cherry.
Often we refer to them simply as cherries.

For indices ijk € I® and a set of left cherries Z% < P% x P* we say a transversal Q
avoids L% if (QY, Q%) ¢ Lk for QU, Q% € Q. Furthermore, we say Q avoids a set of
left cherries 2 = |Jj;pep £V, if it avoids £ for every ijk € I (), Similarly, Q avoids
a set of right cherries Z% < P x Pik if (Q*, Q%) ¢ #* and Q avoids a set of right
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cherries Z = | J;jper R if it avoids each Z7*. Note that these definitions apply both
to J-transversals and to (K, L)-transversals.

3.2. Inhabited transversals in weakly dense reduced hypergraphs. We shall utilise
a key result from [13] on .-dense hypergraphs. Roughly speaking, this notion concerns
hypergraphs which have a uniform edge distribution on large sets of vertices. However,
here we restrict ourselves to the corresponding concepts for reduced hypergraphs arising
after an application of the hypergraph regularity lemma (see, e.g., [10,13] for more details).

Definition 3.1. Let p > 0 and let A be a reduced hypergraph on an index set I. We say
that A is (u,)-dense, if for every ijk € I3 we have

(AT) = [PY[PH[P (31)

Further, for disjoint subsets of indices K,L,M < I we say that A is (u,..)-tridense
on K, L, M, if (3.1) holds for every triple (i,j, k) in K x L x M.

Note that by definition every (d, A)-dense reduced hypergraph is also (d,..)-dense. The
following result from [13, Lemma 3.1] states the existence of transversals containing edges
in .-dense reduced hypergraphs.

Theorem 3.2. Lett € N, u > 0, and let A be a (u,..)-dense reduced hypergraph on a
sufficiently large index set I. There exist a set I, < I of size t and three transversals Q(1,),
R(1,), and S(1,) such that QY R*Si* ¢ E(A) for alli < j <k in I,. O

Triples of transversals satisfying the conclusion of Theorem 3.2 will play an important
role here and this motivates the following definition.

Definition 3.3 (inhabited triple of transversals). Given a reduced hypergraph A with
index set I, we say a triple of transversals Q(J)R(J)S(J) for some J < I is inhabited if
for all i < j < k in J we have QY R*Si* € E(A).

Similarly, for pairwise disjoint sets of indices K, L, M < I, we say a triple of transver-
sals Q(K, LYR(K,M)S(L, M) is inhabited if for every k € K, { € L, and m € M we
have Q¥ RF S € E(A).

We will also need a version of Theorem 3.2 in which the resulting transversals avoid
given sets of forbidden cherries.

Lemma 3.4. For allt € IN and p > 0 there is (' > 0 such that the following holds. Let A

be a (u,.~)-dense reduced hypergraph on a sufficiently large index set I and for alli < j <k

in I let L% < P x P* and %% < P* x PI¥ be sets of left and right cherries satisfying
L <pPYPY and | #] < P[P

There exist a set I, < I of size t and an inhabited triple of transversals Q(1.)R(1.)S(1.)

avoiding the cherries L% and B7* for every ijk e I3,
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For the proof of Lemma 3.4 we will consider random preimages of reduced hypergraphs.

Definition 3.5 (random preimage). Given a reduced hypergraph A with index set I and
vertex classes P¥ for ij € I¥, and given an integer ¢ > 1, we fix (g‘) mutually disjoint
sets P¥ of size { and consider the uniform probability space (A, ) of all mappings h
from | Jj ey P to Uy jepe P satistying

h(PY) < PY
for every ij € 1.

With each such map h we associate a reduced hypergraph A, with index set I and
vertex classes P¥ for ij € I® whose edges are defined by

PYPRPI e BT h(PY)M(PRK(PP) € BA)
for all ijk € I®) and all P € PY, P e Pi* and Pi* e Pi*.

Notice that in this situation h is a hypergraph homomorphism from A; to A. Below
we pass to such a random preimage Aj, of A for sufficiently large ¢, which will allow us to
deduce Lemma 3.4 for A by applying Theorem 3.2 to Aj.

Proof of Lemma 3.4. Given t € IN and p > 0, let ¢; be sufficiently large for an application
of Theorem 3.2 with ¢ and £ in place of ¢ and u. Further, we fix an integer £ and p’ > 0
to satisfy the hierarchy

pott > 0t
Finally, let A be a reduced hypergraph as in the statement of Lemma 3.4. We may assume
that its index set I is of size ;.

Similar as in the proof of [10, Lemma 4.2] we consider the probability space (A, ¢)
from Definition 3.5 and we shall prove that with high probability the associated reduced
hypergraph Ay is (4,..)-dense and no cherry has its image in the sets £* or 2",

For every constituent AY* the random variable e(A7*) satisfies E[e(A7")] > 163 and

by Azuma’s inequality (see, e.g., [8, Corollary 2.27]) we obtain
y ¢
P (A, is not (&, .)-dense) < Z IP(e(Aﬁfk) < %) < (31) exp(—‘;—if) :
ijkel(3)
Moreover, since 2% < /| P¥||P*|, the probability that the image of some cherry lies in
those sets is bounded by
> ]P(h(P:J)h(P:’f) e LV for some PV P e P x 73:’“) < ( 5) w'e*.
ijkel(3)

The same inequality holds for the sets Z“* and our choice of parameters ensures

t t
(31) exp(—’g—if) + 2(31),1/62 <1.
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Therefore, we can fix an h such that A, is (§,..)-dense and no cherry has its image in the
sets £k or Zk.

Applying Theorem 3.2 to A, yields a set I, < I of size t and a triple of transver-
sals Qp(1,)Ry(1,)S,(I,) inhabited in Ay. It is easy to see that the transversals

Q(L) =h(Q(L)), R(L)=~h(R(L)), and S(L)=h(S(L))

are as required. O

3.3. Partite versions. We will also need a slightly more involved variant of Theorem 3.2,
which guarantees the existence of inhabited triples of transversals in the intersection of
multiple »-tridense reduced subhypergraphs.

Lemma 3.6. For allt, r € N, u > 0 there is some s € IN such that the following is true.
Let A be a reduced hypergraph on index set I. Suppose that we have

(a) disjoint subsets of indices K, L, M < I each of size s,
(b) sets Xq,..., X, of size s, and
(¢) for every r-tuple & € Hiem X; a (p,~)-tridense subhypergraph Ay < A on K, L, M.
Then, there are
(i) subsets K, € K,L, < L, M, € M of size t,
(i) subsets Y; € X; of size t for everyi € [r], and
(7)) a triple of transversals Q(K., Lo )R(K., M.)S(L., M.), which is inhabited in Ay
for every y e [ [y Vi
The proof of Lemma 3.6 relies on three successive applications of the following auxiliary
lemma.

Lemma 3.7. For allt, r € N, u > 0 there is some s € IN such that the following is true.
Let A be a reduced hypergraph on index set 1. Suppose that we have

(a) disjoint subsets of indices K, L < I each of size s,
(b) sets X1,..., X, of size s, and
(¢) for every r-tuple T € Hie[r] X;, every k € K, and every { € L a subset Pkl = P of
size at least p|P*|.
Then, there are
(i) subsets K' € K,L' < L of size t,
(i) subsets X! < X; of size t for everyi € [r], and
(#ii) a transversal Q(K', L") such that for every & € [ [,y X{ and every (k, () € K’ x L'
we have that Q* e Pkt

Proof. Given t, r € N, u > 0 we fix an integer s such that

tr < s, (3.2)
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Let A be a reduced hypergraph as in the statement of the lemma and further let K’ € K,
and L' < L be arbitrary subsets of size .
For every (K’, L')-transversal Q we consider the set

1(Q) = {z e [ [ Xi: @ e PE for all (k) e K’ x L’} :
i€[r]
Summing over all (K’, L')-transversals Q assumption (c) yields
2

2l@i= > I[ P=et T PTG

Q 2€] ey Xi (k0K =L’ (k,0)eK'x L’ ie[r]
Hence, we can fix a (K’, L')-transversal Q such that

2
©(Q)] = 1 ‘Xz} .
i€[r]

We may view r(Q) as an r-partite r-uniform hypergraph of density at least ,utz on vertex
classes of size s. Consequently, a result of Erdds [3] combined with the hierarchy (3.2)
yields subsets X/ < X; of size t for every i € [r] such that

[[Xi =9,
i€[r]

which concludes the proof of Lemma 3.7. O
Next we derive Lemma 3.6.
Proof of Lemma 3.6. Given t, r € N, u > 0 we fix integers s, s’, and s” such that
tru < «s «s
and let A be a reduced hypergraph as in the statement of the lemma. We will prove the

lemma by applying Lemma 3.7 three times, once for every pair from K, L, and M.

First step. For every k € K, { € L, m € M, and every T € ]_L.e[r] X; we consider the
set
PM ) = {Pké € PMZ }N_A%zm(PM)} > %|’Pkm||735m|}

(z,m

Since A; is (u,)-tridense, we have
(AE™) = plPH PR P,
and a standard counting argument implies

[Pl = [P

(z,m
Lemma 3.7 applied with s’, 7 + 1, and § in place of ¢, r, and p and with X, , = M
yields s’-element subsets K' € K, L' < L, M' < M, and X] < X, for every 7 € [r] and a
transversal Q(K’, L') such that for every (2,m) € [ [;c,) X{ x M" and every (k,() € K’ x L'
we have that Q' e Pfém).
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Second Step. Next we consider for every k € K', £ € L', m € M’, and every T €
[ Licpy X7 the set

Pfﬁ . {Pkm e phm. }NAum le Pkm } > u|7;zm|}
By our choice of the transversal Q(K’, L) we have
[N agem (Q)] = §|PE™|| P

and, as before, this implies
[PLy| = &P

Again, we apply Lemma 3.7, now with s”,  + 1, and £ in place of ¢, r, and p and with
X,,, = L', to reach s"-element subsets K" < K', L" < L', M" < M’, and X < X], for
every i € [r] and a transversal R(K"”, M") such that for every (z, () € [ [;c,; X x L" and

every (k,m)e K" x M" we have RF™ e P(m 0)-

Third step. Last, we consider for every £ € L” k€ K", m e M", and every 7 € Hie[r] X/

the set
Py = Narn (QF, R™) .

By our choice of the transversals Q(K”, L") and R(K”, M") we have |73(Z;”k)| > L|phm.
The final application of Lemma 3.7, with ¢, r + 1, and § in place of ¢, r, and pu, yields
t-sized subsets K, € K", L, < L", M, € M", and Y; € X/, for every i € [r], and a
transversal S(L., M,) such that for every y € [ [, Vi and every (k,¢,m) € K, x L, x M,
we have that Q" RF"S™ ¢ E(A;). In other Words, the triple of transversals QRS is
inhabited in every Ay with y € [ [, Y. O

§4. BICOLOURING WICKED REDUCED HYPERGRAPHS

4.1. Plan. This entire section is devoted to the proof of Proposition 2.6. As the argument
is quite long, we would like to commence with a brief outline of our strategy.

4.1.1. Naive ideas. In an attempt to keep this account sufficiently digestible we will system-
atically oversimplify and most claims below will later turn out to be true in a metaphorical
sense only.

It might be helpful to know, what the proof of Proposition 2.6 does, when the given e-
wicked reduced hypergraph A itself possesses a bicolouring ¢ of the vertices (which might
be “unknown® to us) and to contrast this situation with the general case.

What can immediately be seen is that in the bicoloured case A contains many holes, by
which we mean that there are many independent sets ® < V(A) such that for every pair
of indices ij we have |P% N ®| = (1/3 +¢)|P¥|. Indeed, there are “red holes” consisting of
red vertices only and, similarly, there are “blue holes”. For the sake of discussion we will
pretend that these are the only holes, i.e., that each hole is either red or blue.
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In the general case, it might not be clear on first sight that any holes exist, but based on
the assumption that A fails to support a K ég) one can establish that they do. As a matter
of fact, there is a fairly flexible method to construct holes and thus one should think of
the set $ of all holes in A as having a possibly intricate structure. There are three main
lemmata in our analysis of £:

e the transitivity lemma;
e the union lemma;

e and the density increment lemma.

Let us briefly summarise the content of these three statements.

I. Returning to the bicoloured case, “being of the same colour” is an obvious equivalence
relation on §), which has two equivalence classes. Moreover, if ¢ and thus the colouring
of the holes is unknown, this equivalence relation is definable by saying that two holes
are equivalent if and only if they intersect each other (substantially) on every vertex
class P%. When A is arbitrary, the relation of intersecting each other in this sense is
clearly reflexive and symmetric. The aforementioned transitivity lemma ensures that this
relation is transitive as well; its proof requires some effort. One can also show that $)
always consists of exactly two equivalence classes.

I1. In the bicoloured case, the union of two red holes is again a red hole and, in fact,
the class of red vertices is definable as the union of all red holes. It turns out that in the
general case one can prove the union of two equivalent holes to be a hole as well, and this
is what the union lemma asserts.

III. Iterative applications of the union lemma yield two maximal holes, namely the
unions of the two equivalence classes. In the bicoloured case every vertex belongs to one
of these maximal holes, but this is not necessary for the proof of Proposition 2.6 to go
through. All that matters is that for two appropriate holes

most edges with two vertices in one hole have their third vertex in the other hole. (x)

The density increment lemma states that if two holes violate (x), then there are two
other holes covering more space. Thus iterative applications of this lemma show that the
maximal holes satisfy ().

Notice that if we managed to arrive at two holes satisfying (=), then the proof of Propo-
sition 2.6 could be completed by deleting the vertices not belonging to them.

4.1.2. A more realistic picture. Let us now point to two deficiencies of the foregoing outline.
First, we will never show that the given reduced hypergraph A contains a hole containing
no edges at all. All we need and prove is that there are large sets inducing very few edges
in A and thus there will be parameters u, v, etc. quantifying how accurate our holes are.
Second, each step of the argument is accompanied by a significant loss of the relevant
part of the index set. Thus the number of times we apply our key lemmata needs to be
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bounded by a function of € and, therefore, we will never reach holes that are maximal
in the absolute sense. All that can realistically be said is that there are two holes which
cannot be enlarged by a substantial amount, and for this reason we adopt the somewhat

indirect density increment formulation of the third main lemma.

4.1.3. Organisation. In §4.2 and §4.3 we deal with general properties of A-dense reduced
hypergraphs not supporting a K5(3), including the existence of holes. The main result
of §4.4 is the transitivity lemma, a precise version of which will be stated as Lemma 4.10.
Next, the union lemma is obtained in §4.5 (see Lemma 4.13). The proof of the density
increment lemma (Lemma 4.17) requires some preparations provided in §4.6, while the
proof itself is given in §4.7. Finally, we argue in §4.8 that despite the approximate nature
of the arguments provided so far the proof of Proposition 2.6 can be completed by taking
a random preimage.

4.2. Holes and links in reduced hypergraphs. Given a reduced hypergraph A with
index set I, a natural definition of a hole across a subset of indices J < I and subsets
of vertices @7 < PV for ij € J@ would maybe require that for every ijk € J® the sets
®Y, d* PI* span no hyperedges in AY*¥. However, this notion is too restrictive for our
analysis and we shall only require that these sets induce hypergraphs of low density.

Definition 4.1. Given a reduced hypergraph A and a subset of indices J < I we say
that a subset of vertices ® < V(A) is a p-hole on J if 7 = & ~n P¥ is nonempty for all
ij e J® and
(@, %, ) < P[P P
for every ijk e J®).
The size of the hole is |J| and the smallest ¢ > 0 such that |®¥| > ¢|P¥| for every

ij € J® is called the width of the hole. We refer to p-holes with width at least ¢ as
(1, ¢)-holes.

Roughly speaking, for the proof of Proposition 2.6 we shall find two almost disjoint holes
with widths bigger than 1/3 on a large set of indices in a wicked reduced hypergraph.

Holes may induce a few hyperedges. However, cherries that are contained in too many
such hyperedges are considered to be exceptional. This leads to the following definition.

Definition 4.2. Given a ji-hole ® on J, € > 0, and ijk in J® a cherry (PY, P*) € &7 x d**
is e-exceptional if

IN(PY, P™*) n &% > e|PH].
For indices i < j < k in J we denote by

LKD) P x PR (D e) c PYx PIF and R, e) < PF x PIF,
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the e-exceptional left, middle, and right cherries and we set

L(e)= | LH@e), M(®e)= ] A P,e), and Z(D,¢) = |- Z#7*(®¢).

i<j<k i<j<k i<j<k
It is easy to see that holes can only contain few exceptional cherries. More precisely, for
every p-hole ® on J and every € > 0 we have for all t < j < k in J

e [PHL7H(®,e)] < e(@Y, @, &%) < pu [P P[P

and the same reasoning applies to Z and .#. This shows

Y

L@, )| < E[PIIPH], | (@ e)| < LIPY| P
and [ #9(@,2)| < E[PH|[PH|. (4.1)

Often we consider holes ® arising from neighbourhoods N(P*, P*), i.e., for appropri-
ately chosen P* € P* and P* € Pik we set @ = N(P* PI*). Note that in (d,A)-dense
reduced hypergraphs, holes obtained in this way will automatically have width at least d.

Given a (K, L)-transversal Q, a subset K, € K, and an index ¢ € L we define the Q-link
of £ on K, by

MQ K. 0= | N@¥.Q™).

kkiek®

The following lemma asserts that in A-dense reduced hypergraphs that do not support K é?’)
the Q-links contain large holes.

Lemma 4.3. Let t € N, pu, d > 0, let A be a (d,A)-dense reduced hypergraph with in-
dex set I that does not support a Ké?’), and for sufficiently large disjoint subsets of in-
dices K,L < I let Q be a (K, L)-transversal.

Then there exist K, < K and L, < L of size t such that for every ¢ € L, the
link A(Q, K., ) is a (u,d)-hole .

Proof. Let q = ([’gl]) and set ¥ = N(Q", Q") for all kk’ € K@, ¢ € L, and, similarly,
T = NQ™, Q) for all k e K, ¢/ € L®. Consider an auxiliary 2-colouring of the
pairs (kk'k”,¢) € K©® x L depending on whether

e(TI T TEE) > PR || PR PR (4.2)

holds or not. Since K and L are sufficiently large, the product Ramsey theorem (see,
e.g., [7, Theorem 5.1.5]) yields a set K; € K with |K;| > max{3d~%,t} and a set L; < L
with |L;| > max{[x~'],t} such that all pairs (kk'k”,¢) € K® x L, agree whether (4.2)
holds or not. In fact, if (4.2) fails on K f?’) x L1, then arbitrary t-element subsets K, < K;
and L, < Ly have the desired property. Consequently, we may assume that (4.2) holds
on K 53) x Li. We shall show that this implies A to support a K, é?’).
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Let Ly be a subset of L; of size |Ly| = [p~!] and consider some ¢¢' € LY. Since we
have [T| = d|P%| for every k € K, there is a subset Ky K, of size at least d|K,| such
that

N1 #o.
keKo

Repeating this argument iteratively q = (‘L;‘) times, once for every pair in Lo, we obtain

nested subsets K; 2 Ky 2 -+ 2 K 41 such that

|Kys1| = d1|Kq] =3 and ﬂ T % @ for every (' € L .
kGKq+1

The first statement allows us to fix some kE'E" € Ké?jr)l and the second one yields for

every (' € Lg) a fixed vertex P e P satisfying
PEQIQKRE | PIEQRIQRY | P QMR ¢ B(A). (4.3)
We infer from (4.2) and our choice of Ly that

2 e T T >l Lol [P |[PH PR = (PR P

leLo
Consequently, there are an edge RF¥ RFF' RF'F" ¢ E(ARFF") and two distinct indices £, ' €
Lo such that both A € {¢, ¢} satisfy

Rkk’Qk)\Qk’)\’ Rkk”Qk)\Qk”)\’ Rk’k”Qk’)\Qk”)\ c E(A) )

Together with (4.3) we arrive at the contradiction that P, the six vertices Q" with
k€ {k,k k") and X € {¢,¢'}, and the three vertices RF', R*" RF¥" support a Ké?’)
in A. O

Two consecutive applications of Lemma 4.3 yield the symmetric conclusion that both
links A(Q, K., ¢) and A(Q, L., k) are p-holes for every ¢ € L, and k € K,.

Corollary 4.4. Let t € N, u, d > 0, let A be a (d,A)-dense reduced hypergraph with
index set I that does not support a Kég), and for sufficiently large disjoint subsets of
indices K, L < I let Q be a (K, L)-transversal.

Then there exist K, < K and L, < L of size t such that for every ¢ € L. and for

every k € K, the Q-links A(Q, K,,¢) and A(Q, L., k) are (u,d)-holes.

Proof. For sufficiently large t’ = ¢'(t, i1, d) a first application of Lemma 4.3 yields subsets K’
and L’ of size at least ¢’ such that A(Q, K’',¢) is a (i, d)-hole for every ¢ € L’. A second
application to the restricted transversal Q(K’, L’) (with the rdles of K and L exchanged)
then yields subsets L, € L' and K, < K’ of size ¢ such that additionally A(Q, L., k) is
a (u, d)-hole for every k € K,. O
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4.3. Intersecting and disjoint links. Next we define concepts for pairs of links of having
a substantial intersection and of being almost disjoint.

Definition 4.5. Let A be a reduced hypergraph with index set I, let K, L, M < I be
pairwise disjoint sets of indices, and let Q(K, L) and R(K, M) be transversals.
For { € L and m € M we say the links A(Q, K,¢) and A(R, K, m) are é-intersecting if

IN(Q™, Q") A N(RF™, RF™)| = §| P (4.4)
for all kk' € K®). If, on the other hand, (4.4) fails for all kk' € K® | then we say A(Q, K, ()
and A(R, K, m) are é-disjoint.

Moreover, we say a pair of transversals Q(K, L)YR(K, M) has é-intersecting links (resp.
d-disjoint links) if A(Q, K, ¢) and A(R, K, m) are j-intersecting (resp. d-disjoint) for every
el and me M.

We remark that the notions of being d-intersecting and d-disjoint do not complement
each other. However, by means of (the product version of) Ramsey’s theorem we can
always pass to subsets of K, L, and M for which one of the properties holds (see, e.g., the
proof of Corollary 4.7 below).

The next lemma shows that in reduced hypergraphs that do not support K ég) at most

one pair from a triple of inhabited transversals can have an intersecting link.

Lemma 4.6. Let § > 0, let A be a reduced hypergraph with index set I, and for sufficiently
large disjoint sets K, L,M < I let Q(K,L)R(K,M)S(L, M) be an inhabited triple of
transversals. If both pairs of transversals Q(K, LYR(K, M) and Q(K,L)S(L, M) have
d-intersecting links, then A supports a Kég).

Proof. Fix m € M, a subset K, < K of size |67'] + 1, and ¢ = (15712“1). Consider an
arbitrary pair of distinct indices k, k' € K,. Since |[N(Q*, Q¥*) n N(RF™ RF™)| = 6|P¥|
for every ¢ € L, there is a subset L € L of size at least d|L| such that
() M@, Q") A N(R*™ R*™) # & (4.5)
lelq
As the pair kk’ was taken arbitrarily, we can repeat the argument iteratively ¢ times (once
for every pair in K(?) and find nested subsets L 2 L; 2 Ly 2 --- 2 L, such that (4.5)
with L; replaced by L, holds for every kk’ € K.
Moreover, we have |L,| > d9|L| and, since L is sufficiently large, this yields |L,| > 2 and
we can select 00 € Lff). Owing to (4.5) with L; replaced by L,, for every kk' € K there
is a vertex PF*¥ e P*¥ such that

Pkk/ngleg, Pkk’@k@’@k’é” Pkk’kaRk’m c E(A) ) (46)

Next, since Q(K, L)S(L, M) has d-intersecting links and |K,| > 67!, there exists a
pair kk' € K® such that

N(ng,QkZ/) A N(QkIZ,Qk%,) A N(s@m’sﬁ’m> £ o
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Therefore, there is a vertex P e P such that
PUQHQH | PQFIQEY | Pl gtmgtm ¢ B(A). (4.7)
Finally, since Q(K, L)YR(K, M)S(L, M) is inhabited, we have
QN RmGtm | kY Rlm gt e RE'mgim | O pE'm gt ¢ AY (4.8)

Altogether the ten hyperedges provided by (4.6) —(4.8) show that the vertices P, P
together with Q%, Q*', Q¥¢, Q¥¥, RF™ RF™ and S S¢™ support a Kég) on the five
indices k, k', £, /', and m. O

By means of the product Ramsey theorem (see, e.g., [7, Theorem 5.1.5]) we can move
from at most one pair with intersecting links (given by Lemma 4.6) to at least two pairs
with essentially disjoint links.

Corollary 4.7. Lett € IN, § > 0, let A be a reduced hypergraph with index set I that does
not support K, and let Q(K, L)YR(K,M)S(L, M) be an inhabited triple of transversals
for sufficiently large disjoint sets K, L, M < 1.
Then there exist subsets K, < K, L, < L, and M, < M each of size t such that at most
one pair of restricted transversals Q( K, L) R(K,, M.,), Q(K,, L.)S (L, M,), R(K,, M,)S(L,, M,)
has d-intersecting links and all other pairs have d-disjoint links.

Proof. Define a 2-colouring on the triples (kk’,¢,m) € K® x L x M depending on
whether N(Q*, Q¥*) n N(R*™ R¥™) = §|P**| or not. Since K, L, and M are large
enough, we can deduce from the product Ramsey theorem that there exist large sub-
sets K1 € K, Ly € L, and M; € M for which the pair of restricted transversals Q( K7, L1)R(K;, M)
has ¢-intersecting or d-disjoint links.

We can repeat this argument and consider the triples in L§2) x Ki x M to obtain
subsets Ky © Ki,Ly € Ly, and My © M, such that the pair Q(Ky, Ly)S(La, Ms) has
d-intersecting or d-disjoint links. Observe that these properties are preserved under taking
subsets of indices and, hence, also the pair Q(Ks, Lo)R (K>, Ms) has d-intersecting or 6-
disjoint links.

Repeating the Ramsey argument again yields subsets K, € Ky, L, € Lo, and M, < M,
such that all pairs of restricted transversals Q(K,, L,), R(K,, M,), and S(L., M,) have
0-intersecting or d-disjoint links. Since the initial sets K, L, and M are large enough, we
argue that K,, L,, and M, can be taken of size at least t.

Finally, applying Lemma 4.6 we observe that at most one of those pairs of transversals
has a d-intersecting link, and hence, at least two of them have d-disjoint links. O

Finally, we may combine Corollaries 4.4 and 4.7. More precisely, after an application of
Corollary 4.7 and three consecutive applications of Corollary 4.4 we arrive at the following
statement.
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Corollary 4.8. Lett € IN, §, pu, d > 0, let A be a (d,A)-dense reduced hypergraph with
index set I that does mot support a Kés), and for sufficiently large disjoint sets K, L,
M < I let Q(K,L)R(K,M)S(L, M) be an inhabited triple of transversals.
There exist subsets K, <€ K, L, < L, and M, < M of size at least t such that
() at most one pair Q(K., LYR(K., M.), Q(, L)S(Ly, M.), R(K,, MJ)S(L, M.)
of restricted transversals has d-intersecting links and all other pairs have §-disjoint

links
(ii) and for every k € K., £ € L., and m € M, the links A(Q, K., ?), AN(Q, L,, k),
AR, K,,m), A(R, M., k), A(S, L., m), and A(S, M,,{) are (u,d)-holes. O

4.4. Equivalent holes. Roughly speaking, in the next step of the proof of Proposition 2.6
we show that for wicked reduced hypergraphs (see Definition 2.5), the set of holes with
width bigger than 1/3 splits into only two classes defined by d-intersections. For that we
generalise the notion of being d-intersecting from links to holes.

Definition 4.9. Given a reduced hypergraph A with index set I, a subset J < I, and p,
0 > 0, we say two pu-holes ® and ¥ on J are d-intersecting if

|09 A W] = 4|PY| (4.9)

for all ij € J®. If, on the other hand, (4.9) fails for all ij € J®, then we say ® and ¥ are
0-disjoint.

For > 0 and § € (0, 1] the notion of being d-intersecting defines a reflexive and sym-
metric relation on the p-holes on J. Perhaps somewhat surprisingly, the next lemma shows
that this relation is also transitive on holes with width bigger than 1/3 in wicked reduced
hypergraphs, if one passes to an appropriate subset of J. This justifies the shorthand

notation

(PE(S7J\I]

for d-intersecting holes on J. Similarly, ® #5 ; ¥ will indicate that & and ¥ are /-disjoint
on J. Notice that this statement is stronger than the mere negation of ® =5 ; W.

Lemma 4.10 (transitivity lemma). For every e > 0 there exists > 0 such that for
every t € IN the following holds. Suppose A is an e-wicked reduced hypergraph with index
set I and for sufficiently large J < I we are given (u,1/3 + €)-holes ®, ¥, and Q2 on J. If

b=,V and U= ;Q,
then there is a subset J, = J of size at least t such that ® =, ;, Q.
Proof. Given ¢ > 0 we fix auxiliary integers t, t5, t3, and p > 0 satisfying the hierarchy

el ity <ty <ty pt
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Let t € IN and let A be an e-wicked reduced hypergraph with index set I and for sufficiently
large J < I let &, ¥, and Q be (u, 1/3 + €)-holes on J such that the pairs ®¥ and ¥ are
e-intersecting.

Consider an auxiliary 2-colouring of the pairs ij € J® depending on whether

DY A Q| < e|PY| (4.10)

or not. Since |.J| — (t1,t)3, there either exists the desired set J,, or there is a subset J;
J of size t; such that (4.10) holds for every ij € J1(2). So it suffices to show that the second
possibility contradicts the wickedness of A.

First we note that for all i < j < k from J; and every PY € P¥ and P’* € P7* the
(1/3 + ¢,A)-density of A and the given width of the holes ® and 2 together with (4.10)

imply
IN(P7, P7%) A (@ 0 Q™) = [IN(PY, P7*)| + | @] + |Q%| — |[P™*| — |@™ n Q™|
> 2¢|P™. (4.11)

We define the reduced subhypergraph A; < A with index set J;, vertex classes P¥
inherited from A, and constituents

AP* = ATF[DT A WY % G O IR A UF].
Since the pairs ®U and W2 are e-intersecting, we infer from (4.11) for all i < j < k in J;

that
e(A7T) = D1 [Na(PY, PF) A (B U Q)| = 28| PY || PP

Haiy
and, hence, A; is (23, .%)-dense.

We consider the e-exceptional left and right cherries (see Definition 4.2) of the holes &, W,
and Q (restricted to J;) and for every i < j < k in J; we set

Lk = LR ) u LR Qe) and B = BIF(D,e) U BF(V€).
We infer from (4.1) that
2 < EPUIPH| and || < PP

By the choice of p we can apply Lemma 3.4 to A, with ¢, 2¢%, and 2?“ in place of ¢, u
and p'. This yields a set J, © J; of size t5 and an inhabited triple of transversals
Q(J2)R(J2)S(J5) avoiding the exceptional cherries from Z9* and %" for every ijk € J5°.
In particular, for all ¢ < j < k in J; we have

QUR™ S e E(AP") = E(AF[®Y A W, @ U F Wik A k) . (4.12)

We fix disjoint subsets K’ < L < M’ of .J5, where K’ and M’ have size |t2/3| and L has

size ts.
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Note that by definition R(K', M’') < & U Q. Due to the product Ramsey theorem,
applied with the set of colours {®, 2}, this leads to sets K < K’ and M < M’ of size t3
and to a hole IT € {®,Q} such that

R e TI*™ for every k e K, and m e M. (4.13)

Owing to (4.12) the restricted transversals Q(K, L), R(K, M), and S(L, M) form an
inhabited triple in A. We derive a contradiction by Lemma 4.6 and for that we shall
show that two of the pairs Q(K,L)R(K, M), Q(K,L)S(L, M), and R(K,M)S(L, M)
have e-intersecting links.

First, we recall that, independent of the chosen II, the pair Q(K, L)S(L, M) consists
of transversals inside the hole ¥ and both avoid the exceptional left and right cherries
from W. Hence, for all k € K, 00’ € L®, and m € M we have

INAQH, Q) A U™ < g|P™| and  |[N4(S™™, S™) n U] < [P,
Consequently, the (1/3 + ¢, A)-density of A and the width of ¥ imply
[NA(@, @) 0 Na(5™, 57| > <fP|

for every k e K, ¢0' € L®, and m € M, i.e., the pair Q(K, L)S(L, M) has e-intersecting
links.

If I = @, then Q(K,L) and R(K, M) are both transversals in ® (see (4.13)) and
both @ and R avoid the exceptional right cherries of ®. As before, this implies that the
pair Q(K, L)R(K, M) has e-intersecting links. So Lemma 4.6 tells us that A supports
a K ég), contrary to the wickedness of A.

Analogously, if II = Q, then R(K, M) and S(L, M) are both transversals in ) and,
since both R and S avoid the exceptional left cherries of €2, the pair of transversals has e-
intersecting links, which leads to the same contradiction. O

Another application of Ramsey’s theorem leads to the following corollary.

Corollary 4.11. For every € € (0,1] there exists u > 0 such that for all integers t, r = 2
the following holds. Suppose A is an e-wicked reduced hypergraph with index set I and for
sufficiently large J < I we are given (u,1/3 + £)-holes ®1,...,®, on J.
Then there is a subset J, < J of size t such that
(i) for all o, ¢' € [r] the holes @, and @, are either e-intersecting or e-disjoint on J,
(i) and =, j, is an equivalence relation on {®y,..., P, } with at most two equivalence

classes.

Proof. For € € (0,1] let 4 > 0 be given by Lemma 4.10. For fixed ¢, r = 2 let ¢ >t be
sufficiently large for an application of Lemma 4.10 with e, u, and with 2 in place of ¢.
For a given e-wicked reduced hypergraph A and (p, 1/3 + ¢)-holes &4, ..., ®, we impose

that the size of J is at least the 92(2)_colour Ramsey number for graph cliques on ¢’ vertices,
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ie.,
|| — (t/)%a for == {5 = (599’)gg’e[r](2): Eor € {0,1} for oo’ € [T]@)}- (4.14)
We assign to a pair ij € J@ the colour & = (o) ogrefrj@ With &,y = 1 signifying
DY A Y| > [P
and &,y = 0 otherwise. Owing to (4.14) there exists a subset J, < J of size at least

t" = t and a colour £* = (£} ,),pyepj@ such that all pairs of J, were assigned {*. Note
that assertion (¢) follows directly from the definition of the colouring, i.e., ®, and ¢, are
e-intersecting on J, if §;, = 1 and e-disjoint otherwise.

Obviously the relation =, j, is reflexive and symmetric. Moreover, our choice of ¢ allows
us to invoke Lemma 4.10 and the transitivity follows from the definition of the colouring.
Since all holes have width at least 1/3 + ¢, at least two among any choice of three holes
must share at least €|P¥| vertices in P for any ij € J® and, hence, =, ;, has at most
two equivalence classes. O

It will later be important that, under sufficiently general circumstances, there really are
two distinct equivalence classes.

Lemma 4.12. Given t € IN and e, > 0 let I be a sufficiently large set of indices. For
every e-wicked reduced hypergraph A with index set I there are a set J < I of size t and
two e-disjoint (u, 1/3 + £)-holes on J.

Proof. We may assume that we have an integer ¢’ fitting into the hierarchy
I >t >t ut.

Since A is, in particular, (1/3 + ¢,..)-dense, Theorem 3.2 applied with 3t’, 1/3 + ¢ here
in place of t, u there yields a set I’ < I of size 3t and an inhabited triple of transver-
sals Q(I")R(I")S(I').

Fix an arbitrary partition I’ = K’ v L' v M’ such that |K'| = |L'| = |M'| = t'. Now we
apply Corollary 4.8 with €, 1/3 + ¢ here in place of ¢, d there to the inhabited triple of
restricted transversals Q(K’, L'YR(K', M')S(L', M’). This yields subsets K < K', L < L,
and M < M’ of size t satisfying properties (i) and (i) of the corollary.

By (7) we may assume without loss of generality that the pair Q(K, L)R(K, M) has
e-disjoint links. Thus, fixing £ € L and m € M arbitrarily we obtain the desired e-disjoint
(p,1/3 + €)-holes A(Q, K, ¢) and A(R, K, m) on J = K. O

4.5. Unions of equivalent holes. We proceed with the union lemma, which roughly
speaking asserts that unions of equivalent holes are holes. As usual, the precise statement
involves a considerable loss of relevant indices. Moreover, if want such a union & U ¥
to be a p-hole, we need to assume that ® and ¥ themselves are v-holes for some very
small v < p.
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Lemma 4.13 (union lemma). For every u, € > 0 there exists v > 0 such that for everyt €
IN the following holds. Suppose A is an e-wicked reduced hypergraph with index set I and
for a sufficiently large subset J < I we are given two (v,1/3 +¢)-holes ® and ¥ on J such
that ® =, ; V.

Then, there exists a subset J, < J of size at least t such that ® U ¥ is a p-hole on J,.

Proof. As decreasing p makes the lemma stronger, we may assume that u « . Now we
take auxiliary integers ti, ts, t3, and t4 and a positive real v fitting into the hierarchy

extit >ttt >ty vt

More precisely we assume that

(1) t4 is so large that the conclusion of Corollary 4.11 holds for €, u, and for 2, 4, #,
here in place of t, r, |J| there;

(2) ts is so large that the conclusion of Corollary 4.8 holds for ¢4, &, i, 1/3 + €, t3 here
in place of ¢, d, u, d, min{| K|, |L|,| M|} there;

(3) ty is so large and v < p is so small that the conclusion of Lemma 3.4 holds for 3t,
/8, 2v/e, ty here in place of ¢, p, p', |J| there;

(4) and t; — (t2)5.

Finally, given t € IN we suppose that J < I is large so that
[ J] — (t1, 1);
For (v,1/3 4 ¢)-holes ® and ¥ on J let
L =LV, e)uZL(V,e) and Z =X (D,e) v Z(V,¢)
be their e-exceptional left and right cherries. For later reference we recall that (4.1) yields
L] < 26—”|7>U||7>ik| and |27 < 2?”|7>“f||7>jk| | (4.15)

We begin with an application of Ramsey’s theorem for hypergraphs and consider a
2-colouring of the triples ijk € J©® depending on whether

e(®7 L WY B G Wk R G Ik > PP Pk (4.16)

or not. Owing to the size of J, there either exists the desired set J,, or there is a subset J; <
J of size t; such that (4.16) holds for all ijk € Jl(g). We shall show that the second case
leads to a contradiction.

First we observe that for every 15k € Jl(g) inequality (4.16) implies that for at least one
of the eight possible triples (IIy, Ty, IT3) € {®, ¥}® we have

e(IT, T, TH") > Z[PY|[ P[P (1.17)

(Actually, since ® and ¥ are v-holes and v < /8, inequality (4.17) can neither hold
for e(®¥, ®* %) nor for e(V¥, Wik WI*) but we shall not use this here.) Thus, there
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exists an 8-colouring of J1(3) such that if the colour of a triple ijk € J1(3) is (I1y, 1, I13) €
{®, U}3, then this indicates the validity of (4.17) for this triple of holes. In view of (4)
there are a subset Jo = J; of size t5 and a fixed colour (ITy, Iy, II3) € {®, ¥}3 such that
inequality (4.17) holds for every ijk € J2(3).

Now the reduced subhypergraph A; < A with index set J,, vertex classes inherited
from A, and constituents

AP — AUR[ITY TTF 113 (4.18)

foralli < j <k in Jyis (u/8,)-dense. Owing to (4.15) and our choice of t; and v in (3),
Lemma 3.4 ensures that there are a subset .J3 < J, of size 3t3 and an inhabited triple of
transversals Q(J5)R(J3)S(J3) where each transversal avoids the sets of exceptional left
and right cherries . and & of ® and V.

Since Q(J3)R(J3)S(Js) is an inhabited triple, we have QY R*S7* e E(A;) for every
i < j <k in J3 and, therefore, (4.18) implies

Q7ell;, R*ell,, and S*ell; (4.19)

forall i < j < k in Js.

Fix disjoint subsets of indices K3 < L3 < Mj of J3 each of size t3. Clearly, the triple
of restricted transversals Q(K3, L3)R (K3, M3)S(Ls, M3) is still inhabited. Therefore, the
choice of t3 in (2) allows an application of Corollary 4.8, which yields subsets Ky < K3,
L, < Ls, and M, < M; each of size t, satisfying properties (i) and (i) of Corollary 4.8.

Next we shall show that all three pairs of restricted transversals Q(Ky, Ly)R(Ky, My),
Q(Ky, Ly)S(Ly, My), and R(Ky, My)S(Lyg, M,) have e-intersecting links. However, this
contradicts property (i) of Corollary 4.8, which allows only one pair of transversals with
e-intersecting links and this contradiction concludes the proof of Lemma 4.13. Below we
show that the pair Q(Ky, Ly)R(Ky, My) has e-intersecting links. The proof for the other
pairs follows verbatim the same lines.

Fix some ¢ € Ly and m € My. Property (i) of Corollary 4.8 tells us that A(Q, Ky, ()
and A(R, K4,m) are (u,1/3 + €)-holes on K. Moreover, since v < p, also & and ¥
are (p,1/3 + ¢)-holes on K, and, therefore, the choice of ¢4 in (1) and an application of
Corollary 4.11 yield a subset K, < Ky of size two such that ===, g, is an equivalence
relation with at most two equivalence classes on the p-holes

ANQ K., 0), AR,K.,m), II;, and Il,.

In view of (4.19) we have Q(K,, Ls) < II; and R(K,, M,) < I, and, since Q and R
avoid the exceptional cherries from . and %, we infer

IN@™, Q") nTI/¥| <[P and  [N(R', R¥™) nTI5¥| < [P,
where k and £’ denote the two elements of K,. Consequently,

I £ A(Q,K,,¢) and Il # AR, Ky, m).
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As our assumption ® = V¥ yields II; = II, and = has at most two equivalence classes, we
thus arrive at

ANQ,K,,0) =A(R,K,,m).
In other words we have |N(Q*,Q*%) n N(RF™ RF™)| > ¢|P*'|, which excludes the
possibility that the pair of transvervals Q(Ky, Ly)R(Ky, My) has e-disjoint links. So by
property (i) of Corollary 4.8 it follows that this pair has e-intersecting links, as desired. [

For later reference we now state a corollary that follows from Corollary 4.11 and
Lemma 4.13.

Corollary 4.14. For every u, € > 0 there exists v > 0 such that for every t € IN the
following holds. Suppose A is an e-wicked reduced hypergraph with index set I and for a
sufficiently large subset J < I we are given three (v,1/3 + €)-holes ®, V¥, and Q on J such
that ® and ¥ are e-disjoint.

Then, there exists a subset J, < J of size at least t such that

(A) either ® U Q is a (u,1/3 + €)-hole e-disjoint with ¥

(B) or Vo Qisa(u,1/3+ ¢e)-hole e-disjoint with ®.

Proof. Again we may assume that p « . Take appropriate constants
vapu and ty >ty »tvt

and assume that |J| > ;.

Due to Corollary 4.11 there is a subset J; < J of size ¢; such that =, ;, is an equivalence
relation with at most two equivalence classes on {®, W, Q}. By hypothesis the holes ®
and W are in different classes and thus we may assume without loss of generality that

Q =, 1 P and Q 7_é€7J1 v,

An application of Lemma 4.13 yields the existence of a subset Jo < J; of size t, on
which
U Qisa (pu,1/3+ e)-hole.

Now a second application of Corollary 4.11 leads to a t-element subset J, < Js such
that =, ;, is an equivalence relation with at most two equivalence classes on {®, ® U 2, U}.
Since U =, 5, ® #. 5, ¥, we have PUQ #, ;, U. Altogether both parts of (4 ) hold. O

4.6. Holes derived from two transversals. Before we can make further progress, we
need to analyse holes generated by two transversals. Given two transversals Q(J) and
R(J) in a wicked reduced hypergraph A, we wonder whether for fixed ¢ € J the sets
ng c P7* defined by ng = N(QY, R*) form a hole. There are several possible cases
depending on how %, j, k are ordered, and in the lemma that follows we focus on the case
1 < 7 < k. It turns out that if the links of @ and R satisfy a certain equivalence condition
(see (4.20) below), then on a large subset of .J the sets Q/* form holes.
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Lemma 4.15. Let ¢ > 0, v > 0, and t € N be given and suppose that A is an e-wicked
reduced hypergraph with index set I. If J < I is sufficiently large and Q(J), R(J) are two
transversals on J such that all i < 7 < k < { from J satisfy

IN(QF, Q%) n N(R", R)| = ¢|PY], (4.20)
then there is a set J, < J of size t such that we have
e(N(Q7,R™), N(Q7, R"), N(Q", R)) < v|P*||P7||[P™|
foralli<j<k</tinJ,.

Proof. Suppose that |.J| » t; » to » t,e~ ', 71, Set Q% = N(Q7, R*) for all i < j < k
from J and colour the quadruples ¢ < j < k < £ depending on whether

e(, O, Q) > v PP PH (4.21)

holds or fails. Due to |J| —> (4t;,t)5 this either leads to the desired set J, of size ¢, or to
a set J; € J of size 4t; such that (4.21) holds for alli < j < k < £ in J;.

Let J; = X; w K w Ly w M be the (unique) partition of J; into sets of size t; satisfying
X < K1 < Ly < M;. Now for every x € X; the reduced subhypergraph A, of A
with index set K7 w Ly w My, vertex classes inherited from A, and constituents A';Em =
AFEIQRE QFm Ofm] s (v, .)-tridense. Therefore, Lemma 3.6 applied to ty, 1, v here in
place of t, r, u there yields subsets Xy € Xy, Ky € Ky, Ly < Ly, and My © M of size ty
and a triple of transversals T (Ky, Lo)U(Ks, M3)V(Ly, My) which is inhabited in every A,
with x € Xs.

Owing to the definition of the constituents of these reduced hypergraphs this means
that for all (x,k,¢,m) € Xy x Ky x Ly x My we have

TH e, UMreQtm vimeQlm,  and  TMUMV™ e E(AM™).
In other words, all four triples of transversals

Q(Xy, K2)R(Xa, L2)T (Ka, L2) Q(Xo, Ko)R(Xo, Mo)U(K2, M) ,
Q(XQ,LQ)R(XQ,MQ)V(LQ,MQ) s and T(KQ,LQ)U(KQ,MQ)V(LQ,MQ)

are inhabited in A.

We successively apply Corollary 4.8 to these four triples of inhabited transversals with
e, v, 1/3 + € here in place of §, u, d there. Each of these applications shrinks the sets
of indices still under consideration and eventually we obtain sets X3, K3, L3, and M3 of
size 2, which satisfy (i) and (i7) of Corollary 4.8 for all those four inhabited triples of
transversals. Let us write X3 = {z, 2}, K3 = {k,k'}, L3 = {¢,¢'}, and M3 = {m,m’}.

Now our assumption on the transversals Q and R yields

|N(ka7Qm’k) A N(RmZ’Rx’Z” > €|Pmm’|



TURAN DENSITY OF 5-CLIQUES IN HYPERGRAPHS WITH QUASIRANDOM LINKS 25

and thus the pair Q(X3, K3)R (X3, Ls) has e-intersecting links. So by () of Corollary 4.8
applied to QRT the pairs Q(X3, K3)T (K3, Ls) and R(Xs, Ls)T (K3, L3) have e-disjoint
links. Similarly, the pairs Q(X3, K3)R (X3, M3) and Q(X3, L3)R(X3, M3) have e-intersecting
links, whereas the pairs Q(Xs, K3)U (K3, Ms), R(Xs, M3)U (K3, M3), Q(X3, L3)V(Ls, Ms),
and R(X3, M3)V(Ls, M3) have e-disjoint links.

Let us now look at the three subsets N(Q*F, Q*¥), N(T* T**) and N(U*™ U*™)
of P*'. As A is (1/3 + £,A)-dense, each of them has at least the size (1/3 + ¢)|P*¥|.
Moreover, the fact that Q( X3, K3)T (K3, L3) and Q(X3, K3)U (K3, Ms3) have e-disjoint links
implies
IN(@Q™, Q™) A N(TH, TH)| < eP™]| and  [N(Q™, Q™) 0 N(U™™, UM™)| < e|P™].
For all these reason we have |N(T*, T ~ N(U*™, U¥™)| = ¢|P**'| and, hence, the links
of T(Ks, L3)U(K3, Ms) are e-intersecting.

Arguing similarly with the subsets N(R*™ R*™™), N(U*™ U*") and N(V'm V™)
of P™™ one can show that the pair U(Ks3, M3)V(Ls, M3) has e-intersecting links as well.

Thus the application of Corollary 4.8 to the triple TUYV yields two pairs of e-intersecting
links, contrary to clause (7). O

We proceed with a related result that, given two transversals Q(.J), S(J), addresses
holes composed of sets of the form Q¥ = N(Q®, S%), where i < x < j. The proof is very
similar to the previous one, but towards the end we shall need an additional argument.

Lemma 4.16. Givene > 0, v > 0, and t € IN let A be an e-wicked reduced hypergraph
with index set I. If J < I is sufficiently large and Q(J), S(J) are two transversals on J
such that allt < j < k </ from J satisfy
IN(QY,Q™) n N(S, 8¥)| = ¢|P™"| and  [N(S™,5%) n N(57,57)| = | P, (4.22)
then there is a set J, < J of size t such that we have
e(N(Q™,5%), N(Q™, 5™), N(Q", 5"")) < v|PY|[P™||P|

foralli<x<j<y<kinlJ,.

Proof. Since decreasing v makes the statement stronger, we may assume that v « e.
Suppose that [J| » t; » to » t3 » t,e~ 1, v~!. This time we set QY = N(Q%, S5%) for all
1 <z < j from J and colour the quintuples + < x < 7 < y < k depending on whether

(4, QuF, ) > | P[P [P (4.23)

holds or fails. Due to |J| — (5ty,t)5 this either leads to the desired set J, of size ¢, or to
a set J; € J of size 5t; such that (4.23) holds for all i <z < j <y < k in J;.
Now we partition

J1=K1K:JX1UL1U1/1L:)M1
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into t;-sets ordered by K7 < X; < Ly <Yj < M; and form for every pair (z,y) € X; x Y}

the reduced subhypergraph A,, of A with index set K v L; w My, vertex classes inherited

from A, and with constituents A¥™ = AMm[QF QF QU] As these reduced hypergraphs

are (v,.)-tridense, Lemma 3.6 applied to t5, 2, v here in place of ¢, r, u there yields subsets

Ky c Ky, Xo € Xy, Lo € Ly, Ys €Y7, and M, € M of size t, and a triple of transversals

T (K, Lo)U(Ks, M2)V(Ls, My), which is inhabited in every A,, with z € X, and y € Y.
As in the proof of the foregoing lemma one observes that the four triples

Q(Ky, Xo)T (K2, Lo)S(Xs, Ly) Q(Ky, Xo)U(Ky, M3)S(Xz, Ms),
Q(Ls, Y2)V(La, My)S(Ya, M) and T (Ka, Lo )U (K3, My)V(Lo, My)

are inhabited in A.

Again, we apply Corollary 4.8 successively to all these triples, this time obtaining sets K,
X3, Lz, Y3, and M3 of size t3, satisfying (i) and (i) of Corollary 4.8 for these four
triples of transversals. As before the desired contradiction arises from the fact that the
pairs T (K3, L3)U(K3, M3) and U (K3, M3)V(Ls, M3) have e-intersecting links, contrary to
Corollary 4.8 (7).

The first of these two facts can be proved in the usual way: By (4.22) the pairs
Q(K3, X3)S(X3, Ls) and Q(K3, X3)S(X3, M;) have e-intersecting links and, therefore, the
pairs Q(K3, X3)T (K3, Ls) and Q(K3, X3)U (K3, M3) have e-disjoint links. So for arbitrary
kK € Ky, v € X3, { € Ls, and m € My the subsets N(Q", Q**), N(T* T**), and
N(UF™ UF™) of PF* have at least the size (1/3 + &)|P**'| and the first of them intersects
the two other ones in less than |P*¥'| vertices each. This yields

IN(TH, T¥) n N(UF™, UF™)| > e P

and thus the pair T (K3, L3)U(K3, Ms) has indeed e-intersecting links.

It is less obvious, however, that the pair U(K3, M3)V(Ls, M3) has e-intersecting links
as well. To confirm this, we pick arbitrary vertices k € K3, x € X3, £ € L3, y € Y. Due
to v « € we can invoke Corollary 4.11 and pass to a subset My < M; of size 2 such that
===y, is an equivalence relation with at most two equivalence classes on the set of
v-holes

{AU, My, k), ANV, My, 0), A(S, My, x), A(S, My, y)} .

By the left statement in (4.22) the pairs Q(K3, X3)S(X3, M3) and Q(Ls, Y3)S(Ys, M3)
have e-intersecting links and, hence, by our application of Corollary 4.8 to the triples OUS
and QVS the pairs U (K3, M3)S(X3, M3) and V(Ls, M3)S(Ys, Ms) have e-disjoint links, for
which reason

A(Z/{, M4,]€) §é A(S, M4,SL’> and A(V, M4,€) §é A(S, M4,y) . (424)
Moreover, writing M, = {m,m’} the right part of (4.22) yields
[N(§*™, S7™) A N(S¥™, SU™)| = e[ P™™],
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whence A(S, My, z) = A(S, My, y). Together with (4.24) this discloses
AU, My, k) = ANV, My, 0)
and, consequently, U(K3, M3)V(Ls, M3) has e-intersecting links, as desired. O

4.7. Two large disjoint holes. In this section we establish the existence of two essentially
disjoint holes such that most cherries in each hole have a large neighbourhood in the other
hole. For that we consider the following sets of unwanted cherries.

Given p-holes ® and W on .J, v > 0, and indices ijk € J® a cherry (P%, P*) e PV x Pk
is v-bad if either

(PY, P*) e ® x ®* and [N (PY, P™) \ W/*| > 5| P
or (PY,P%) e W" x ¥* and |[N(PY, P*) \ | = 5|P7¥|.
For ¢ < j < k we denote the sets of all v-bad left, middle, and right cherries by
%ijk(q)’ \If,v) c Pl % 'Pik, %ijk(é’ \If,’}/) c PY x 'ij’ and @ijk(é’ \If,’}/) c Pik % ijk‘

The following lemma shows that given two disjoint holes ® and ¥ of width at least 1/3+¢
there are either (for a large subset of indices) few ~-bad cherries or there are two other
holes covering substantially more space. It might be helpful to point out that eventually
we will only use this lemma for v = ¢/12.

Lemma 4.17 (density increment lemma). For every pu, e = v > 0 andt € N there isv > 0
such that the following holds. Suppose A is an e-wicked reduced hypergraph with index set I
and for sufficiently large J < I we are given e-disjoint (v,1/3 + €)-holes ® and ¥ on J.

Then, there exists a subset J, < J of size t such that one of the following alternatives
occurs.

ere exist two e-disjoint (W, + €)-holes ©, and VY, on J, such that
A) Th ' disjoi 1/3 holes ® dwv J. h th
07 U W] > |97 LY+ J[PY)
for every ij € J?
(B) or for alli < j <k in J, the sets of y-bad cherries satisfy
|BIH(D, W, y)| < pPY|[PH], €7@, 0,9)] < ulP7||PH],
and | ZH(®, 0, y)| < p|P*||P*].

Proof. Given u, € = v > 0 and t we fix auxiliary integers t,, to, t3,t4, and we choose v to

satisfy

eyt sty <ty <ty <ty vt

Let A, J < I, ®, and ¥ be as in the statement of the lemma, where J is so large that
|J| — (t1,t1,t1,t)3. We suppose that (B) fails and intend to derive (4 ).
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Our assumption on the size of J combined with the failure of (B) yields a subset J; < J
of size t; such that one of the following three statements holds:

(1) |B* (D, W, ~)| > u|PY||P*| for all i < j <k in Jy,

(2) |C* (D, W, )| > pu|P¥||P*| for all i < j < k in J,

(3) or |Z2UF(®, U, ~)| > u|P*||PI*| for all i < j < kin J;.

As reversing the order < on [ exchanges (1) and (3), we may assume that one of the
first two cases occurs.

First Case: We have | B9*(®, U, )| > u|PY||P*| for alli < j <k in Jy.
For all i« < j < k in J; at least one of the sets
%gk _ %z]k(é’qj’,}/) A @ij « (I)zk and %gk _ %ijk(q)’ \D’,y) A U % \Ile

must consist of more than &|P¥||P%| bad cherries. Thus, a further application of Ramsey’s
theorem allows us to assume that there is a set Jy € J; of size ty such that

23| > SIPY|[P*] (4.25)
holds for all 7 < j < k in J5.
Claim 4.18. There are a set J5 S Jy of size t3 and transversals Q(J3), R(Js) such that

V(@Y. R™) (@7 L wh)| = 1P (4.26)
forallv < j <k inJs and
IN(@Q™,Q™) n N(R", R")| = e[ PY] (4.27)

whenever i < j < k < { are in Js.

Proof. Let As be the auxiliary reduced hypergraph with index set J, and vertex classes P
for ij J2(2) whose constituents are defined by

(P P* P*y e B(AY) = (P9, P%) e B Ld, 5/2)
for all i < j < kin Jy and all (P¥, P* Pik) e Pl x Pk x Pi* Due to (4.1) we have
24(®,/2)] < IPUIIPH < GIPYPH

for all i < j < k in Jy and together with (4.25) this establishes that As is (u/4,.".)-dense.
Together with
ijk 2V g | | pik ijk 2V ik | pik
| L9H(2,7/2)] < 7|7”||7’ | and  [Z27H(®,0/2)] < 7|7’ 1P,

and v < 7, p this shows that Lemma 3.4 yields a set J; < Jy of size t3 and transver-
sals Q(J3), R(J3), and §(J3) that avoid £ (P, ~/2) and Z(P,~/2) and form an inhabited
triple in A,.
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In particular, we have Q¥ R*S/* ¢ E(A,) for all i < j < k in .J3 and thus
(Q7, R*) e BI* . L%, ~/2). (4.28)
By the definitions of #" and £7*(®, ~/2) this tells us
IN(QU, R*) W = AP and  [N(QY,R™) n @7 < JIPP],
and by subtracting these estimates one easily confirms (4.26).
Now let i < j < k < ¢ from J3 be arbitrary. Since @ and R avoid Z(®,~/2), we have
IN(@Q*, Q™) n @Y < LIPY| <¢[PY] and |N(R", R') n@Y| < ZPY| <&[PY.
Since each of the three subsets N(Q™*, Q7%), N(R¥, R?*), and ®¥ of P¥ has at least the
size (1/3 + )|P¥], this implies (4.27). O

Now Lemma 4.15 applied to J3 and the transversals Q(.J3), R(J3) yields a set J; < J3
of size t4 + 1 such that all i < j < k < £ in J; satisfy

(N(Q, B, N(Q, BY), N(Q™, B)) < v[P™|[P|[PH].
Setting = min(J;"), Jy = J; ~ {z}, and
OF — N(Q, R
for all jk € Jf) we obtain
o0, 1, ) < o[ P[P [P

for all jk¢ € J¥. In other words, the set € = Ujkle> QY is a (v,1/3 + ¢)-hole. Moreover,
by (4.26) we have
}ij ~ (@R U \I/’k)} > %}ij}.
Now by Corollary 4.14 there exists a subset .J, < J4 of size t in which Q2 U ® and ¥

or QU ¥ and ® are two e-disjoint u-holes. Due to (4.26) this shows that (A ) holds either
for &, = ® U Q and ¥, =V, or for ¢, =P and ¥, =¥ U 2.

Second Case: We have | €% (®, U, ~)| > u|PY||P*| for alli < j < k in J,.
As before we consider the set of e-bad cherries €3* and €@ restricted to the respective

holes and following the same Ramsey argument we find a subset Jy; < J of size at least ¢y
for which we may assume that

65 > SIPY P
holds for all : < 7 < k in Js.
Claim 4.19. There are a set J3 S Jy of size t3 and transversals Q(J3), S(J3) such that

IN(QY, %)~ (&% L )| = 2P| (4.29)
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whenever i < j < k are in J3, and
IN(Q, Q%) n N(S7, S| = e|P*| and |N(S™*,S%) n N(S*, 57| = ¢|P™| (4.30)
foralli<j<k<{inJs.

Proof. This time the constituents of our auxiliary reduced hypergraph A with index set .Js
are defined by

{PU PR PMe BIATY)  «=  (PY,P*) e G° N a7(2,7/2)

fori < j < kin J; (see Definition 4.2). As in the first case Lemma 3.4 leads to a set J3 < J,
of size t3 and transversals Q(.J3), S(Js) which satisfy (Q¥, S7%) e €% < .M'7*(®,~/2) for
all i < j <k in J3 and avoid the left and right (v/2)-exceptional cherries of ®. Again the
first of these properties yields

NI, ™)\ WM = 9[PH and  IN(QT,S) n | < 2P|

and (4.29) follows upon subtraction.

For the proof (4.30) we fix four indices i < j < k < £ from J;. The subsets N(Q%, Q*),
N (87, S*) and ®7* of PI* have size at least (1/3+¢)|P?*| and the third of them intersects
the other two in less than |P7*| vertices. This implies the left part of (4.30). The right side
can be shown in the same way, looking at the sets N(S%, S%), N(S/* S7%) and ®¥. O

Now we define
09 = N(Q™,5%) PV

for all i < # < y in J;. Owing to Lemma 4.16 there exists a set J;” < Js of size 2t, — 1
such that

(7, 5, ) < wIPY| P[P (431)

holds for all ¢ < 2 < j <y < k from J;". Let J = {j(1),...,7(2t; — 1)} enumerate the
elements of J; in increasing order, let J; = {j(1),5(3),...,7(2t4 — 1)} be the t4-element
subset of J; consisting of the elements occupying odd positions, and set

QIr=1i2s=1) _ i@r=Di@s=D o a1 pg e [t4](2) )

3(2r)
By (4.31) the set Q@ = |, @ Q@r=1i2s=1) is a (v,1/3 + £)-hole on J, and in view
of (4.29) we can finish as in the first case. O

Now Lemma 4.12 followed by iterative applications of Lemma 4.17 leads to two nonequiv-
alent holes with few bad cherries.

Corollary 4.20. For every i, e =~ > 0 andt € N the following holds. If A is an e-wicked
reduced hypergraph whose index set I is sufficiently large, then there exist a subset J < I
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of size t and e-disjoint (u,1/3 + ¢)-holes ® and ¥ on J such that for alli < j <k in J
the sets of v-bad cherries satisfy

[ B2, W, 7)| < pl P[P, €7@, 0, y)| < ulPY|IP,
and  |27%(2, 0, 7)] < p| P[P (4.32)

Proof. By Lemma 4.17 there are functions f: Rog x N — R.g and g: Rog x N — N
such that for all ¢, € IN, u, € R.q the conclusion of Lemma 4.17 holds for i, t., f(ps, ts)
and g(ji.,t.) here in place of u, t, v and |J| there.

Starting with po=p and ty = t we recursively set pim1 = f(tm, tm) and t1 = g(tm, tm)
for every integer m > 0. Without loss of generality we may assume that the sequence
(fm)m=0 is decreasing and that t,, > 2 for every m. Setting s = [4y~!] we shall now prove
the conclusion of our corollary for |J| » tg, u;t, et

Due to Lemma 4.12 there are a set J; € J of size ts and two e-disjoint (us, 1/3 + €)-
holes on J,. Thus there exists a least nonnegative integer m < s such that there are
a set J, < J of size t,, and two e-disjoint (i, 1/3 + €)-holes &, ¥ on J,, such that
D% | + [W| > (s — m)y|P|/2 holds for every pair ij € J”.

As our choice of s entails sv/2 > 2, we cannot have m = 0. Thus Lemma 4.17 leads
to a set J,,_1 < Jy, of size t,,_; such that either (A) or (B) holds for ju,, 1 here in place
of p there. By the minimality of m alternative (A) is impossible. For this reason the
restrictions of ® and W to arbitrary t-element subsets of J,,_; are as desired. O

4.8. Bicolourisation. It remains to argue that by taking a random preimage we can
convert, Corollary 4.20 into Proposition 2.6.

Proof of Proposition 2.6. Given ¢ and t we take v, x> 0 and ¢ € IN such that

vy = 15—2 and et >0ty p

and consider an e-wicked reduced hypergraph A4 whose index set I is sufficiently large.
Due to Corollary 4.20 there are a set J < I of size ¢t and e-disjoint p-holes ®, ¥ on J such
that for all i < 7 < k in J we have

(B2, W, 7)| < pPY|[PE], €7@, 0, )| < plPY|IP
and  |275(®, 0, 7)] < p|P*||P]. (4.33)

Next we define a reduced subhypergraph A; of A admitting a bicolouring ¢; which
satisfies, with only few exceptions, the minimum codegree condition 75(A1, 1) = 1/3+¢/4.
To this end we consider for every pair ij € J® the sets

MY = YUY and BY = Y DV

and then we set R = ()0 RY as well as B = ), BY. Now let A; be the reduced
hypergraph with index set J, vertex classes P{’ = R¥ v BY = P for every ij € J@, and
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edges
E(A;) = E(RUB) N (E(R) U E(B)).

Since ® and ¥ are e-disjoint and have width at least 1/3 + ¢ we have
y 2 g
Py > (g +e) [P (4.34)

for every ij € J@.
It is plain that the map ¢;: V(A;) — {red,blue} defined by ¢;'(red) = 9 and
@7 *(blue) = B is a bicolouring of A;.

Claim 4.21. In A, all monochromatic cherries (Py’, Pi*) that fail to be y-bad in A have
codegree at least (1/3 + ¢/4)|P*|.

Proof. Suppose i < j < k and that (Py, P/*) = (RY, R*) € R x R is a red left cherry
not belonging to ZY*(®, ¥, v). Due to

[NA(RY, R™) \ WF] < PP
we have
[N, (RY, R™)| =|Na(R?, R*) 0 B
> [NA(RY, R™)| = [Na(RY, B*) \ WF| — |07 o 0|

> <§ + 6) |PIF| — 4| PIF| — |®F A WIF|

1 . . . 2 . . .
> (5 + Z) (|P*| = |®7* A WIF)) + 3 (e[P*| — |®7F A Wik))

1 ¢ :
>(-+-) [P

where the penultimate inequality uses the definition of v and the last inequality follows
from PJ* < PIF (&% ~ WI*). This concludes the proof for red left cherries and all other

cases can be treated analogously. U

Similar as in [10, Lemma 4.2] we will define the reduced hypergraph A, by taking the
preimage of a random homomorphism A € 2(A;,¢). Recall from Definition 3.5 that for
every map h € (A1, ) the associated reduced hypergraph Aj; has index set J and vertex
classes P of size (.

Observe that there is no h € (A;, ¢) such that A, supports a K 5(3), because otherwise
the homomorphism h would show that A; < A supports a K, ég) as well, contrary to A
being wicked. Furthermore, for every h € (A, ¢) the map ¢; = ¢1 o h is a bicolouring
of Aj,. So it remains to show that if h gets chosen uniformly at random, then with positive

probability the event
1 ¢
Ap, = -+ =
To(An, ¢n) 378

occurs. We estimate for each cherry of A;, the probability that it violates this condition.
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Claim 4.22. Ifijk e J® and (P9, P*) e PY x P¥* is a cherry of Ay, then the event X

that

Pn(PY) = n(PY) and |Na, (P2, PY)| < (5 +5)IPI"

has at most the probability 3p + exp ( 128)

Proof. Without loss of generality we may assume ¢ < j < k. By the law of total probability
we have

1 - - ) )
P(X) = —7 =m0 > P (X |h(P7) = PY and h(P*) = P™*) .
|7D ||7D1 | (PZJ Ppik G,PZJ X,sz

Note that cherries (P%, P%*) consisting of two vertices with different colours contribute
zero to this sum. Moreover, due to (4.33) the total contribution from cherries (P, Pi*)
belonging to #Y*(®, ¥, ~) is at most

ulPI|[P#] 39 (3)
—— < — < 3u.
PYIPE 2) 1=
Furthermore, for P, P%* of the same colour with (P¥, Pi*) ¢ %9%(®, ¥, ~) Claim 4.21

combined with Chernoft’s inequality tells us

P (X |h(PF) = P and h(P¥) = P*) < exp (—5%)

128

and Claim 4.22 follows. O

Since Ay, has 3¢%(%) cherries, Claim 4.22 implies

1

& t &2
P (nldngn < 5+ 5) <32 (3) (v ew (-5)

Owing to the hierarchy pu « ¢! « ¢=! this probability is smaller than 1 and, therefore,
there is a map h € (A4, ¢) for which A, has the desired properties. O

§5. CLIQUES ON FIVE VERTICES IN BICOLOURED REDUCED HYPERGRAPHS

In this section we establish Proposition 2.7 and show that bicoloured reduced hyper-
graphs with minimum monochromatic codegree density bigger than 1/3 support a K, ég).

In the proof we shall use the following types of neighbourhoods in reduced hyper-
graphs A. For two vertices P, P’ € V(A) and a subset U < V(A) we denote by Ny (P, P’)
the neighbourhood restricted to U. Similarly, for two subsets U, U’ < V(A) we write
Ny (P) for the set of pairs in U x U’ that together with P form a hyperedge in A, i.e.,

Ny(P,P')={UeU: PP'Ue E(A)}
and Ny (P) = {(U,U") eU x U': PUU’ € E(A)}.
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Proof of Proposition 2.7. Clearly we may assume that ¢ < %. Fix a sufficiently small
% is equal to some positive integer s.

Moreover, let I be a sufficiently large index set such that its cardinality satisfies the

auxiliary constant ¢ with 0 < £ « ¢ such that

partition relation |I| — (5)?, meaning that it is at least as large as the s-colour Ramsey
number for the graph clique Kj5. Let A be a bicoloured reduced hypergraph with index
set I and vertex classes P¥ for ij € I® and let the bicolouring ¢: V(A) — {red, blue}
satisfy (A, ¢) = 1/3 + .

For every ij € 1? we set

R = o~ (red) N PY and 0ij = |£Rw|
1P

and, analogously, we define BY = ¢~ !(blue) N P¥ and §;; = [BY|/|P¥|. In view of (2.1),
the assumption on 73(A, ) implies that all g;;, §;; are in [1/3 + ¢,2/3 — ¢]. Splitting this

interval into s intervals of length 2¢, the size of I yields a subset J < [ of size 5 such that
all B;; with ij € J® are in the same interval. Let 3 be the centre of this interval and
set o = 1 — 3. We thus arrive at

Bij =B+ and 0ij = 0% ¢

for all i5 € J). Without loss of generality we may assume 3 < p, which implies
1 1 2
§+5<6—§<5<§<Q<Q+§<§—5. (5.1)
For ijk € J®) the codegree condition translates for red vertices RY € R% and R* e R

to

[N (R, ) = (s, 1% > (3 ) P

1 1 ik Lo e i
>(§+5) (m)m |>(35+2>|% . (5.2)

where we used ¢ « ¢, 8 for the last inequality. Similarly, for blue vertices we have
Nowe (B, B)| > (i n f) % (5.3)
30 2
We may rename the indices in J and assume that J = Z/5Z. We shall show that .4
restricted to J supports a Kég). For that we have to find ten vertices P¥ € P¥, one
for every ij € J®, such that for all of the ten triples ijk € J® the vertices PY, P,
and P* span a hyperedge in the constituent A“*. For every i € J = Z/57 we will
select P%*! from B! and P“*? from M2 Since A contains no monochromatic
triples as hyperedges, this choice for the colour classes is up to a permutation of indices
unavoidable, as it corresponds to the unique 2-colouring of F(K5) with no monochromatic
triangle.
The rest of the proof is based on several averaging arguments relying on the minimum
degree condition. For generic vertices from R and B we shall use capital letters R and B.
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In the process we will make appropriate choices to fix the ten special vertices that induce
the supported K é?’). For those vertices we will use small letters  and b depending on their
colour.

We begin with the selection of 714 € ]!, Applying (5.3) to all pairs of vertices B € B
and B* € B4 implies that the total number of hyperedges in A5 crossing the sets SR,

B and B is at least
1 €
%15 %45 . — 4= %14 )
B2 (5o + 5 )

Consequently, we can fix some vertex r'4 € }!* such that

1
(— T %) bdib: N (5.4)

|N4315X%45(’f’14)| 39

\%

The following claim fixes the four vertices b'2, v** and '3, r?4.

Claim 5.1. There are blue vertices b*? € B2, b3* € B34 and red vertices r'3 € R3, r2* e R
such that

(1) bY2r¥r2t and r3r1p3t are hyperedges in A

(i) and [Nges (', 7%%) 0 Nagas (24, 0%)] = (1 = 35)[B*].

Proof. Owing to (5.2) for every R € R we have d(R", ") > (35 + §)[B*| and, hence,
there is a vertex b3 € B3 such that

1 € 0
Nos (r' 0™ = | == + = ) [®R"] = =|PY. 5.5
Similarly, we can fix a vertex 7?* € %4 such that
1
[N 11,59 > L) (56)
o

Recalling that |R'3| < (o + &)| P3| for every B'? € B'? and B* € B? we have

1
\les(Bm, 323) N Ng{ls(’l“m,b%)‘ = (g + 8) |P13| + ‘Ng{ls(T’M, b34)\ — |9%13|

1
> | Ngus (714, 554)] - (g +E—3- 5) P

(5'25) (1 - 36+ g) | Ngys (r', ™))

> (30-4) Wous (.6,

where the last estimate uses § + o = 1 and % + % > 2. Hence, the number of hyperedges
crossing Nz (1!, )| Nagas (124, 031), and Ngqs (!, 034) is at least

|N%12 (7“14, T24)||N%23 (7’24, b34)| : <3Q - %) |N9§13 (7’14, b34)| .
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Consequently, there exist b'? € Ngiz2(r'4, 1) and 713 € Nyus(r'4, b31) such that

|N%23 (612, 7”13) N Neges (7‘24, 1334)| = (3@ — g) |N%23 (7’24, 634)|

B
(5.6) 1
> (1-— ) [8%]. O
(1-35)
The next claim fixes the four vertices b*?, b*> and r??, r35. Together with Claim 5.1 this

b23

fixes all vertices except and both claims together guarantee those seven hyperedges

supporting a K ¥ that do not involve 2.

Claim 5.2. There exist blue vertices b*> € B, v¥ ¢ B and red vertices r*®> € R,
35 € M3 such that b2b'5r2?>, r13ptor35  pMpISAS 240 25p45 — and b34350%5 are hyperedges

in A.

Proof. We consider two sets of “candidates” for the pair (b'°,5*®) that are relevant for the
existence of r?® and r3°. More precisely, we set

G1 = {(B",B%) e B x B*: Nyos (b2, BY) N Nyos (r?*, BY) # o}

Y

and Gy = {(B",B*) e B x B Nyss (r'?, B'®) n Nyss (b**, B?) # @}

Note that for every B' € B'5 there is some R* € Nyzs(b'2, B'S) and we have

6

2) 1
| Nogas (r**, R®)| > %|‘B45|-

Clearly, {B'®} x Ngis(r?t, R?®) € G and, hence, we establish
1
30

A symmetric argument yields the same bound for Gy. Combining (5.7) and the same
bound for Gy with (5.4) leads to

(Gi| = —[B"||B*]. (5.7)

2
G| + (Gl + [ Nagssapis (74| > (— ;

ia
35 3o

5.1
+ 5) |%15||;B45| (>) D) |%15||;B45| )

Consequently, we can fix a pair (b'°,0%) € G1 N Gy N Nagis a5 (r'). Moreover, having
fixed b'® and b* this yields a vertex r?° € :’?° from the non-empty intersection considered
in the definition of G;. Similarly, G5 leads to our choice of 3% € 935,

Since (b5, 0%°) € Ngis 15 (r'?), the hyperedge 714056 exists in A and the other four

hyperedges result from the definitions of GG; and Gb. O

As mentioned above, Claims 5.1 and 5.2 fix all vertices except b* € 623 and all hyper-

b23

edges not involving b=°. For the three remaining hyperedges it suffices to show that

Nagza (02, 7%) 1 N (121, %) 2 Nogea (1%, 7) # .
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Claim 5.1 (77) and (5.2) imply

}N‘B23<bl2’7,13> A N%23(T24,b34) A ng23(7”25,7‘35)}

> ‘N«st(bm, %) A Negas (122, 634)‘ + ‘N%zs(r%, 7"35)‘ — }%23‘

(5.2) 1 1 €
> (1-—=+—=+--1) 8% >0.
( 33 35 12 )' >

Hence a suitable choice for b** exists and, therefore, A restricted to J supports a K, é?’). U

§6. CONCLUDING REMARKS
We close with a few related open problems and possible directions for future research.

6.1. Turan problems for cliques in A-dense hypergraphs. In view of Theorems 1.2
and 1.3 for cliques K é?’) with £ < 16 vertices only the cases ¢ = 9 and 10 are still unresolved

and closing the bounds

1 2
5 < WA(KSSS)) < WA(KS)) < 3

would be interesting. It seems plausible that by combining our main result with the ideas
in [14] one can derive the improved upper bound 7, (K {3)) < % More generally, it seems
that m,(K®) = a implies WA(KQ(?) < 74 and we shall return to this topic in the near
future.
Determining the value m, (K f’)) for large values of £ might be a challenging problem and
one may first focus on the asymptotic behaviour. For every ¢ > 3 Theorem 1.2 tells us
1
log, ()

For a lower bound we consider the following well known random construction.

(K <1

. (6.1)

Example 6.1. For r > 2 we consider random hypergraphs H, = (V, E,) with the edge
set defined by the non-monochormatic triangles of a random r-colouring ¢: V® — [r]
for a sufficiently large vertex set V. It is easy to check that for any fixed n > 0 with high
probability such hypergraphs H, are (n, %,A)-dense. On the other hand, if ¢ is at least
as large as R(3;r), the r-colour Ramsey number for graph triangles, then every such H.,
is K!¥_free

Z .

Consequently, Example 6.1 yields
1
ma(K®) = 1= = whenever £ > R(3;7)
r

and using the simple upper bound R(3;7) < 37! we arrive at

_ log, log, ()
log,(¢)

for sufficiently large ¢. Comparing the bounds in (6.1) and (6.2) leads to the following

m(KP) =1 (6.2)

problem.
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Problem 6.2. Determine the asymptotic behaviour of 1 — WA(Kf’)).

6.2. Turan problems for hypergraphs with uniformly dense links. As discussed in
the introduction there is a small difference between Theorem 1.3 and Corollary 1.5. Below
we briefly elaborate on these differences.

In this work we study A-dense hypergraphs, which are defined by the lower bound
condition (1.1) in Definition 1.1. Requiring in addition a matching upper bound, i.e.,
replacing (1.1) by

lea(P,Q) — dIKA(P, Q)| < 0|V,
leads to the notion of (1, d, A)-quasirandom hypergraphs. Clearly, we can transfer the defi-
nition of mo(F") in (1.2) and define the Turén-density 7, (F") by restricting to A-quasirandom
hypergraphs H

/

7o (F) = sup{d € [0, 1]: for every n > 0 and n € IN there exists an F-free,

(n,d, A)-quasirandom hypergraph with at least n vertices} .
By definition we have 7, (F) < mo(F') for every hypergraph F' and one may wonder if this
inequality is sometimes strict.

For K, ég) it is easy to check that the lower bound construction in Example 1.4 yields
K 5(3)—free (n,1/3, A)-quasirandom hypergraphs for every fixed n > 0 and, hence,

T (KP) = m(KEY) =

L Wl

On the other hand, the lower bound construction for K ég from [14] is given by Example 6.1
for r = 2. In those hypergraphs H, we can take P and () to be the pairs in colour 1 and

2 respectively and get
eh(Pa Q) = |’CA(P> Q)| )

i.e., they have relative density 1. Therefore, the hypergraphs H,, are only (7, 1/2, A)-dense,
but not (n,1/2,A)-quasirandom. In fact, we are not aware of any matching quasirandom
lower bound construction for m,(KL") and it seems possible that (K ) is strictly smaller

than WA(Ké3)) suggesting the following general problem.*
Problem 6.3. Which hypergraphs F satisfy w\(F') < wa(F)?
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